Source code for astroML.plotting.scatter_contour

import numpy as np


[docs]def scatter_contour(x, y, levels=10, threshold=100, log_counts=False, histogram2d_args=None, plot_args=None, contour_args=None, filled_contour=True, ax=None): """Scatter plot with contour over dense regions Parameters ---------- x, y : arrays x and y data for the contour plot levels : integer or array (optional, default=10) number of contour levels, or array of contour levels threshold : float (default=100) number of points per 2D bin at which to begin drawing contours log_counts :boolean (optional) if True, contour levels are the base-10 logarithm of bin counts. histogram2d_args : dict keyword arguments passed to numpy.histogram2d see doc string of numpy.histogram2d for more information plot_args : dict keyword arguments passed to plt.plot. By default it will use dict(marker='.', linestyle='none'). see doc string of pylab.plot for more information contour_args : dict keyword arguments passed to plt.contourf or plt.contour see doc string of pylab.contourf for more information filled_contour : bool If True (default) use filled contours. Otherwise, use contour outlines. ax : pylab.Axes instance the axes on which to plot. If not specified, the current axes will be used Returns ------- points, contours : points is the return value of ax.plot() contours is the return value of ax.contour or ax.contourf """ x = np.asarray(x) y = np.asarray(y) default_contour_args = dict(zorder=2) default_plot_args = dict(marker='.', linestyle='none', zorder=1) if plot_args is not None: default_plot_args.update(plot_args) plot_args = default_plot_args if contour_args is not None: default_contour_args.update(contour_args) contour_args = default_contour_args if histogram2d_args is None: histogram2d_args = {} if contour_args is None: contour_args = {} if ax is None: # Import here so that testing with Agg will work from matplotlib import pyplot as plt ax = plt.gca() H, xbins, ybins = np.histogram2d(x, y, **histogram2d_args) if log_counts: H = np.log10(1 + H) threshold = np.log10(1 + threshold) levels = np.asarray(levels) if levels.size == 1: levels = np.linspace(threshold, H.max(), levels) extent = [xbins[0], xbins[-1], ybins[0], ybins[-1]] i_min = np.argmin(levels) # draw a zero-width line: this gives us the outer polygon to # reduce the number of points we draw # somewhat hackish... we could probably get the same info from # the full contour plot below. outline = ax.contour(H.T, levels[i_min:i_min + 1], linewidths=0, extent=extent, alpha=0) if filled_contour: contours = ax.contourf(H.T, levels, extent=extent, **contour_args) else: contours = ax.contour(H.T, levels, extent=extent, **contour_args) X = np.hstack([x[:, None], y[:, None]]) if len(outline.allsegs[0]) > 0: outer_poly = outline.allsegs[0][0] try: # this works in newer matplotlib versions from matplotlib.path import Path points_inside = Path(outer_poly).contains_points(X) except ImportError: # this works in older matplotlib versions import matplotlib.nxutils as nx points_inside = nx.points_inside_poly(X, outer_poly) Xplot = X[~points_inside] else: Xplot = X points = ax.plot(Xplot[:, 0], Xplot[:, 1], **plot_args) return points, contours