import matplotlib.pyplot as plt
from pathlib import Path
from sklearn.metrics import roc_curve
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
import random
from sklearn.utils import shuffle
from sklearn.metrics import accuracy_score
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
if "setup_text_plots" not in globals():
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)
plt.rcParams['axes.xmargin'] = 0.05
plt.rcParams['axes.ymargin'] = 0.05
def read_savefile(filename):
'''Read npy save file containing images or labels of galaxies'''
return np.load(filename)
def CNN(img_channels, img_rows, img_cols, verbose=False):
'''Define CNN model for Nair and Abraham data'''
# some hyperparamters you can chage
dropoutpar = 0.5
nb_dense = 64
model = Sequential()
model.add(Convolution2D(32, 6, 6, border_mode='same',
input_shape=(img_rows, img_cols, img_channels)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Convolution2D(64, 5, 5, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 5, 5, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(128, 2, 2, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(128, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(nb_dense, activation='relu'))
model.add(Dropout(dropoutpar))
model.add(Dense(1, init='uniform', activation='sigmoid'))
print("Compilation...")
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
print("... done!")
if verbose is True:
print("Model Summary")
print("===================")
model.summary()
return model
def train_CNN(X, Y, ntrain, nval, output="test", verbose=False):
'''Train the CNN given a dataset and output model and weights'''
# train params - hardcoded for simplicity
batch_size = 30
nb_epoch = 50
data_augmentation = True # if True the data will be augmented at every iteration
ind = random.sample(range(0, ntrain+nval-1), ntrain+nval-1)
X_train = X[ind[0:ntrain], :, :, :]
X_val = X[ind[ntrain:ntrain+nval], :, :, :]
Y_train = Y[ind[0:ntrain]]
Y_val = Y[ind[ntrain:ntrain+nval]]
# input image dimensions
img_rows, img_cols = X_train.shape[1:3]
img_channels = 3
# Right shape for X
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols,
img_channels)
X_val = X_val.reshape(X_val.shape[0], img_rows, img_cols, img_channels)
# Avoid more iterations once convergence
patience_par = 10
earlystopping = EarlyStopping(monitor='val_loss', patience=patience_par,
verbose=0, mode='auto' )
modelcheckpoint = ModelCheckpoint(output+"_best.hd5", monitor='val_loss',
verbose=0, save_best_only=True)
# Define CNN
model = CNN(img_channels, img_rows, img_cols, verbose=True)
if not data_augmentation:
print('Not using data augmentation.')
history = model.fit(X_train, Y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
validation_data=(X_val, Y_val),
shuffle=True, verbose=verbose,
callbacks=[earlystopping, modelcheckpoint])
else:
print('Using real-time data augmentation.')
# this will do preprocessing and realtime data augmentation
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=45,
width_shift_range=0.05,
height_shift_range=0.05,
horizontal_flip=True,
vertical_flip=True,
zoom_range=[0.75, 1.3])
datagen.fit(X_train)
history = model.fit_generator(
datagen.flow(X_train, Y_train, batch_size=batch_size),
samples_per_epoch=X_train.shape[0],
nb_epoch=nb_epoch,
validation_data=(X_val, Y_val),
callbacks=[earlystopping, modelcheckpoint])
print("Saving model...")
# save weights
model.save_weights(output+".weights", overwrite=True)
def apply_CNN(X, model_name):
'''Apply a CNN to a data set'''
# input image dimensions
img_rows, img_cols = X.shape[1:3]
img_channels = 3
X = X.reshape(X.shape[0], img_rows, img_cols, img_channels)
# load model & predict
print("Loading weights", model_name)
model = CNN(img_channels, img_rows, img_cols)
model.load_weights(model_name+".weights")
Y_pred = model.predict_proba(X)
return Y_pred
def add_titlebox(ax, text):
'''Add an embedded title into figure panel'''
ax.text(.1, .85, text,
horizontalalignment='left',
transform=ax.transAxes,
bbox=dict(facecolor='white', edgecolor='none', alpha=0.8))
return ax
def plot_CNN_performance(pred, labels):
'''Plot ROC curve and sample galaxies'''
fig = plt.figure(figsize=(6, 3))
fig.subplots_adjust(wspace=0.1, hspace=0.1,
left=0.1, right=0.95,
bottom=0.15, top=0.9)
# define shape of figure
gridsize = (2, 4)
ax1 = plt.subplot2grid(gridsize, (0, 0), colspan=2, rowspan=2)
ax2 = plt.subplot2grid(gridsize, (0, 2))
ax3 = plt.subplot2grid(gridsize, (0, 3))
ax4 = plt.subplot2grid(gridsize, (1, 2))
ax5 = plt.subplot2grid(gridsize, (1, 3))
# plot ROC curve
fpr, tpr, thresholds = roc_curve(labels, pred)
ax1.plot(fpr, tpr, color='black')
ax1.set_xlabel(r'False Positive Rate')
ax1.set_ylabel(r'True Positive Rate')
# array of objects (good E, good S, bad E, bad S)
goodE = np.where((pred[:, 0] < 0.5) & (labels == 0))
goodS = np.where((pred[:, 0] > 0.5) & (labels == 1))
badE = np.where((pred[:, 0] < 0.5) & (labels == 1))
badS = np.where((pred[:, 0] > 0.5) & (labels == 0))
ax2.imshow(D[pred_index + goodE[0][1]])
add_titlebox(ax2, "Correct E")
ax2.axis('off')
ax3.imshow(D[pred_index + goodS[0][4]])
add_titlebox(ax3, "Correct Spiral")
ax3.axis('off')
ax4.imshow(D[pred_index + badE[0][1]])
add_titlebox(ax4, "Incorrect E")
ax4.axis('off')
ax5.imshow(D[pred_index + badS[0][3]])
add_titlebox(ax5, "Incorrect Spiral")
ax5.axis('off')
plt.show()
n_objects = 500
save_files = "./SDSS{}".format(n_objects)
# Read SDSS images and labels
D = read_savefile("sdss_images_1000.npy")[0:n_objects]
Y = read_savefile("sdss_labels_1000.npy")[0:n_objects]
# Train network and output to disk (keep 10% of data for test set)
ntrain = D.shape[0] * 8 // 10.
nval = D.shape[0] // 10
npred = D.shape[0] - (ntrain + nval) # test sample size;
pred_index = ntrain + nval # test sample start index;
# Normalize images
mu = np.amax(D, axis=(1, 2))
for i in range(0, mu.shape[0]):
D[i, :, :, 0] = D[i, :, :, 0] / mu[i, 0]
D[i, :, :, 1] = D[i, :, :, 1] / mu[i, 1]
D[i, :, :, 2] = D[i, :, :, 2] / mu[i, 2]
# change order so that we do not use always the same objects to train/test
D, Y, = shuffle(D, Y, random_state=0)
my_file = Path(save_files + ".weights")
if my_file.is_file():
Y_pred = apply_CNN(D[pred_index:pred_index + npred, :, :, :], save_files)
Y_test=Y[pred_index:pred_index + npred]
else:
print("Training Model")
print("====================")
model_name = train_CNN(D, Y, ntrain, nval, output=save_files)
Y_pred = apply_CNN(D[pred_index:pred_index + npred, :, :, :], save_files)
Y_test = Y[pred_index:pred_index + npred]
Y_pred_class = Y_pred * 0
Y_pred_class[Y_pred > 0.5] = 1
print("Global Accuracy:", accuracy_score(Y_test, Y_pred_class))
plot_CNN_performance(Y_pred, Y_test)