Source code for astroML.time_series.generate

import numpy as np
from sklearn.utils import check_random_state


[docs]def generate_power_law(N, dt, beta, generate_complex=False, random_state=None): """Generate a power-law light curve This uses the method from Timmer & Koenig [1]_ Parameters ---------- N : integer Number of equal-spaced time steps to generate dt : float Spacing between time-steps beta : float Power-law index. The spectrum will be (1 / f)^beta generate_complex : boolean (optional) if True, generate a complex time series rather than a real time series random_state : None, int, or np.random.RandomState instance (optional) random seed or random number generator Returns ------- x : ndarray the length-N References ---------- .. [1] Timmer, J. & Koenig, M. On Generating Power Law Noise. A&A 300:707 """ random_state = check_random_state(random_state) dt = float(dt) N = int(N) Npos = int(N / 2) # Nneg = int((N - 1) / 2) domega = (2 * np.pi / dt / N) if generate_complex: omega = domega * np.fft.ifftshift(np.arange(N) - int(N / 2)) else: omega = domega * np.arange(Npos + 1) x_fft = np.zeros(len(omega), dtype=complex) x_fft.real[1:] = random_state.normal(0, 1, len(omega) - 1) x_fft.imag[1:] = random_state.normal(0, 1, len(omega) - 1) x_fft[1:] *= (1. / omega[1:]) ** (0.5 * beta) x_fft[1:] *= (1. / np.sqrt(2)) # by symmetry, the Nyquist frequency is real if x is real if (not generate_complex) and (N % 2 == 0): x_fft.imag[-1] = 0 if generate_complex: x = np.fft.ifft(x_fft) else: x = np.fft.irfft(x_fft, N) return x
[docs]def generate_damped_RW(t_rest, tau=300., z=2.0, xmean=0, SFinf=0.3, random_state=None): """Generate a damped random walk light curve This uses a damped random walk model to generate a light curve similar to that of a QSO [1]_. Parameters ---------- t_rest : array_like rest-frame time. Should be in increasing order tau : float relaxation time z : float redshift xmean : float (optional) mean value of random walk; default=0 SFinf : float (optional Structure function at infinity; default=0.3 random_state : None, int, or np.random.RandomState instance (optional) random seed or random number generator Returns ------- x : ndarray the sampled values corresponding to times t_rest Notes ----- The differential equation is (with t = time/tau): dX = -X(t) * dt + sigma * sqrt(tau) * e(t) * sqrt(dt) + b * tau * dt where e(t) is white noise with zero mean and unit variance, and Xmean = b * tau SFinf = sigma * sqrt(tau / 2) so dX(t) = -X(t) * dt + sqrt(2) * SFint * e(t) * sqrt(dt) + Xmean * dt References ---------- .. [1] Kelly, B., Bechtold, J. & Siemiginowska, A. (2009) Are the Variations in Quasar Optical Flux Driven by Thermal Fluctuations? ApJ 698:895 (2009) """ # Xmean = b * tau # SFinf = sigma * sqrt(tau / 2) t_rest = np.atleast_1d(t_rest) if t_rest.ndim != 1: raise ValueError('t_rest should be a 1D array') random_state = check_random_state(random_state) N = len(t_rest) t_obs = t_rest * (1. + z) / tau x = np.zeros(N) x[0] = random_state.normal(xmean, SFinf) E = random_state.normal(0, 1, N) for i in range(1, N): dt = t_obs[i] - t_obs[i - 1] x[i] = (x[i - 1] - dt * (x[i - 1] - xmean) + np.sqrt(2) * SFinf * E[i] * np.sqrt(dt)) return x