This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

SDSS Stripe 82 Standard StarsΒΆ

Figure 1.9.

Scatter plot with contours over dense regions.This is a color-color diagram of the entire set of SDSS Stripe 82 standard stars; cf. figure 1.6.

../../_images_1ed/fig_S82_scatter_contour_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
from matplotlib import pyplot as plt

from astroML.plotting import scatter_contour
from astroML.datasets import fetch_sdss_S82standards

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Fetch the Stripe 82 standard star catalog

data = fetch_sdss_S82standards()

g = data['mmu_g']
r = data['mmu_r']
i = data['mmu_i']

#------------------------------------------------------------
# plot the results
fig, ax = plt.subplots(figsize=(5, 3.75))
scatter_contour(g - r, r - i, threshold=200, log_counts=True, ax=ax,
                histogram2d_args=dict(bins=40),
                plot_args=dict(marker=',', linestyle='none', color='black'),
                contour_args=dict(cmap=plt.cm.bone))

ax.set_xlabel(r'${\rm g - r}$')
ax.set_ylabel(r'${\rm r - i}$')

ax.set_xlim(-0.6, 2.5)
ax.set_ylim(-0.6, 2.5)

plt.show()