This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

SDSS Moving Object CatalogΒΆ

Figure 1.12.

A multicolor scatter plot of the properties of asteroids from the SDSS Moving Object Catalog (cf. figure 1.8). The left panel shows observational markers of the chemical properties of the asteroids: two colors a* and i-z. The right panel shows the orbital parameters: semimajor axis a vs. the sine of the inclination. The color of points in the right panel reflects their position in the left panel. This plot is similar to that used in figures 3-4 of Parker et al 2008.

../../_images_1ed/fig_moving_objects_multicolor_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from astroML.datasets import fetch_moving_objects
from astroML.plotting.tools import devectorize_axes

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


def black_bg_subplot(*args, **kwargs):
    """Create a subplot with black background"""
    kwargs['axisbg'] = 'k'
    ax = plt.subplot(*args, **kwargs)

    # set ticks and labels to white
    for spine in ax.spines.values():
        spine.set_color('w')

    for tick in ax.xaxis.get_major_ticks() + ax.yaxis.get_major_ticks():
        for child in tick.get_children():
            child.set_color('w')

    return ax


def compute_color(mag_a, mag_i, mag_z, a_crit=-0.1):
    """
    Compute the scatter-plot color using code adapted from
    TCL source used in Parker 2008.
    """
    # define the base color scalings
    R = np.ones_like(mag_i)
    G = 0.5 * 10 ** (-2 * (mag_i - mag_z - 0.01))
    B = 1.5 * 10 ** (-8 * (mag_a + 0.0))

    # enhance green beyond the a_crit cutoff
    G += 10. / (1 + np.exp((mag_a - a_crit) / 0.02))

    # normalize color of each point to its maximum component
    RGB = np.vstack([R, G, B])
    RGB /= RGB.max(0)

    # return an array of RGB colors, which is shape (n_points, 3)
    return RGB.T


#------------------------------------------------------------
# Fetch data and extract the desired quantities
data = fetch_moving_objects(Parker2008_cuts=True)
mag_a = data['mag_a']
mag_i = data['mag_i']
mag_z = data['mag_z']
a = data['aprime']
sini = data['sin_iprime']

# dither: magnitudes are recorded only to +/- 0.01
mag_a += -0.005 + 0.01 * np.random.random(size=mag_a.shape)
mag_i += -0.005 + 0.01 * np.random.random(size=mag_i.shape)
mag_z += -0.005 + 0.01 * np.random.random(size=mag_z.shape)

# compute RGB color based on magnitudes
color = compute_color(mag_a, mag_i, mag_z)

#------------------------------------------------------------
# set up the plot
fig = plt.figure(figsize=(5, 2.2), facecolor='k')
fig.subplots_adjust(left=0.1, right=0.95, wspace=0.3,
                    bottom=0.2, top=0.93)

# plot the color-magnitude plot
ax = black_bg_subplot(121)
ax.scatter(mag_a, mag_i - mag_z,
           c=color, s=0.5, lw=0)
devectorize_axes(ax, dpi=400)

ax.plot([0, 0], [-0.8, 0.6], '--w', lw=1)
ax.plot([0, 0.4], [-0.15, -0.15], '--w', lw=1)

ax.set_xlim(-0.3, 0.4)
ax.set_ylim(-0.8, 0.6)

ax.set_xlabel(r'${\rm a*}$', color='w')
ax.set_ylabel(r'${\rm i-z}$', color='w')

# plot the orbital parameters plot
ax = black_bg_subplot(122)
ax.scatter(a, sini,
           c=color, s=0.5, lw=0, edgecolor='none')
devectorize_axes(ax, dpi=400)

ax.plot([2.5, 2.5], [-0.02, 0.3], '--w', lw=1)
ax.plot([2.82, 2.82], [-0.02, 0.3], '--w', lw=1)

ax.set_xlim(2.0, 3.3)
ax.set_ylim(-0.02, 0.3)

ax.set_xlabel(r'${\rm a (AU)}$', color='w')
ax.set_ylabel(r'${\rm sin(i)}$', color='w')

# label the plot
text_kwargs = dict(color='w', transform=plt.gca().transAxes,
                   ha='center', va='bottom')

ax.text(0.25, 1.02, 'Inner', **text_kwargs)
ax.text(0.53, 1.02, 'Mid', **text_kwargs)
ax.text(0.83, 1.02, 'Outer', **text_kwargs)

# Saving the black-background figure requires some extra arguments:
#fig.savefig('moving_objects.png',
#            facecolor='black',
#            edgecolor='none')

plt.show()