This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Spherical ProjectionsΒΆ

Figure 1.14.

Four common full-sky projections. The shaded ellipses represent the distortion across the sky: each is projected from a circle of radius 10 degrees on the sphere. The extent to which these are distorted and/or magnified shows the distortion inherent to the mapping.

../../_images_1ed/fig_projections_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from astroML.plotting import plot_tissot_ellipse

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# generate a latitude/longitude grid
circ_long = np.linspace(-np.pi, np.pi, 13)[1:-1]
circ_lat = np.linspace(-np.pi / 2, np.pi / 2, 7)[1:-1]
radius = 10 * np.pi / 180.

#------------------------------------------------------------
# Plot the built-in projections
plt.figure(figsize=(5, 4))
plt.subplots_adjust(hspace=0, wspace=0.12,
                    left=0.08, right=0.95,
                    bottom=0.05, top=1.0)

for (i, projection) in enumerate(['Hammer', 'Aitoff', 'Mollweide', 'Lambert']):
    ax = plt.subplot(221 + i, projection=projection.lower())

    ax.xaxis.set_major_locator(plt.FixedLocator(np.pi / 3
                                                * np.linspace(-2, 2, 5)))
    ax.xaxis.set_minor_locator(plt.FixedLocator(np.pi / 6
                                                * np.linspace(-5, 5, 11)))
    ax.yaxis.set_major_locator(plt.FixedLocator(np.pi / 6
                                                * np.linspace(-2, 2, 5)))
    ax.yaxis.set_minor_locator(plt.FixedLocator(np.pi / 12
                                                * np.linspace(-5, 5, 11)))

    ax.grid(True, which='minor')

    plot_tissot_ellipse(circ_long[:, None], circ_lat, radius,
                        ax=ax, fc='k', alpha=0.3, linewidth=0)
    ax.set_title('%s projection' % projection)

plt.show()