This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Plot the power spectrum of LIGO dataΒΆ

Figure 10.6

LIGO data and its noise power spectrum. The upper panel shows a 2-second-long stretch of data (~8000 points; essentially noise without signal) from LIGO Hanford. The middle and bottom panels show the power spectral density computed for 2048 seconds of data, sampled at 4096 Hz (~8 million data values). The gray line shows the PSD computed using a naive FFT approach; the dark line uses Welch’s method of overlapping windows to smooth noise; the middle panel uses a 1-second-wide top-hat window and the bottom panel the so-called Hanning (cosine) window with the same width.

../../_images_1ed/fig_LIGO_power_spectrum_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from scipy import fftpack
from matplotlib import mlab

from astroML.datasets import fetch_LIGO_large

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Fetch the LIGO hanford data
data, dt = fetch_LIGO_large()

# subset of the data to plot
t0 = 646
T = 2
tplot = dt * np.arange(T * 4096)
dplot = data[4096 * t0: 4096 * (t0 + T)]

tplot = tplot[::10]
dplot = dplot[::10]

fmin = 40
fmax = 2060

#------------------------------------------------------------
# compute PSD using simple FFT
N = len(data)
df = 1. / (N * dt)
PSD = abs(dt * fftpack.fft(data)[:N / 2]) ** 2
f = df * np.arange(N / 2)

cutoff = ((f >= fmin) & (f <= fmax))
f = f[cutoff]
PSD = PSD[cutoff]
f = f[::100]
PSD = PSD[::100]

#------------------------------------------------------------
# compute PSD using Welch's method -- no window function
PSDW1, fW1 = mlab.psd(data, NFFT=4096, Fs=1. / dt,
                      window=mlab.window_none, noverlap=2048)

dfW1 = fW1[1] - fW1[0]

cutoff = (fW1 >= fmin) & (fW1 <= fmax)
fW1 = fW1[cutoff]
PSDW1 = PSDW1[cutoff]

#------------------------------------------------------------
# compute PSD using Welch's method -- hanning window function
PSDW2, fW2 = mlab.psd(data, NFFT=4096, Fs=1. / dt,
                      window=mlab.window_hanning, noverlap=2048)

dfW2 = fW2[1] - fW2[0]

cutoff = (fW2 >= fmin) & (fW2 <= fmax)
fW2 = fW2[cutoff]
PSDW2 = PSDW2[cutoff]

#------------------------------------------------------------
# Plot the data
fig = plt.figure(figsize=(5, 5))
fig.subplots_adjust(bottom=0.1, top=0.9, hspace=0.3)

# top panel: time series
ax = fig.add_subplot(311)
ax.plot(tplot, dplot, '-k')
ax.set_xlabel('time (s)')
ax.set_ylabel('$h(t)$')

ax.set_ylim(-1.2E-18, 1.2E-18)

# middle panel: non-windowed filter
ax = fig.add_subplot(312)
ax.loglog(f, PSD, '-', c='#AAAAAA')
ax.loglog(fW1, PSDW1, '-k')
ax.text(0.98, 0.95, "Top-hat window",
        ha='right', va='top', transform=ax.transAxes)

ax.set_xlabel('frequency (Hz)')
ax.set_ylabel(r'$PSD(f)$')

ax.set_xlim(40, 2060)
ax.set_ylim(1E-46, 1E-36)
ax.yaxis.set_major_locator(plt.LogLocator(base=100))

# bottom panel: hanning window
ax = fig.add_subplot(313)
ax.loglog(f, PSD, '-', c='#AAAAAA')
ax.loglog(fW2, PSDW2, '-k')
ax.text(0.98, 0.95, "Hanning (cosine) window",
        ha='right', va='top', transform=ax.transAxes)

ax.set_xlabel('frequency (Hz)')
ax.set_ylabel(r'$PSD(f)$')

ax.set_xlim(40, 2060)
ax.set_ylim(1E-46, 1E-36)
ax.yaxis.set_major_locator(plt.LogLocator(base=100))

plt.show()