This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Generalized vs Standard Lomb-Scargle

Figure 10.16

A comparison of the standard and generalized Lomb-Scargle periodograms for a signal y(t) = 10 + sin(2pi t/P) with P = 0.3, corresponding to omega_0 ~ 21. This example is, in some sense, a worst-case scenario for the standard Lomb-Scargle algorithm because there are no sampled points during the times when ytrue < 10, which leads to a gross overestimation of the mean. The bottom panel shows the Lomb-Scargle and generalized Lomb-Scargle periodograms for these data; the generalized method recovers the expected peak as the highest peak, while the standard method incorrectly chooses the peak at omega ~ 17.6 (because it is higher than the true peak at omega_0 ~ 21). The dotted lines show the 1% and 5% significance levels for the highest peak in the generalized periodogram, determined by 1000 bootstrap resamplings (see Section 10.3.2).

Note: This Plot Contains an Error

After the book was in press, a reader pointed out that this plot contains a typo. Instead of passing the noisy data to the Lomb-Scargle routine, we had passed the underlying, non-noisy data. This caused an over-estimate of the Lomb-Scargle power.

Because of this, we add two extra plots to this script: the first reproduces the current plot without the typo. In it, we see that for the noisy data, the period is not detected for just ~30 points within ten periods.

In the second additional plot, we increase the baseline and the number of points by a factor of ten. With this configuration, the peak is detected, and the qualitative aspects of the above discussion hold true.

We regret the error!

../../_images_1ed/fig_LS_sg_comparison_1.png ../../_images_1ed/fig_LS_sg_comparison_2.png ../../_images_1ed/fig_LS_sg_comparison_3.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt

from astroML.time_series import \
    lomb_scargle, lomb_scargle_BIC, lomb_scargle_bootstrap

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Generate data where y is positive
np.random.seed(0)
N = 30
P = 0.3

t = P / 2 * np.random.random(N) + P * np.random.randint(100, size=N)
y = 10 + np.sin(2 * np.pi * t / P)
dy = 0.5 + 0.5 * np.random.random(N)
y_obs = y + np.random.normal(dy)

omega_0 = 2 * np.pi / P

#######################################################################
# Generate the plot with and without the original typo

for typo in [True, False]:
    #------------------------------------------------------------
    # Compute the Lomb-Scargle Periodogram
    sig = np.array([0.1, 0.01, 0.001])
    omega = np.linspace(17, 22, 1000)

    # Notice the typo: we used y rather than y_obs
    if typo is True:
        P_S = lomb_scargle(t, y, dy, omega, generalized=False)
        P_G = lomb_scargle(t, y, dy, omega, generalized=True)
    else:
        P_S = lomb_scargle(t, y_obs, dy, omega, generalized=False)
        P_G = lomb_scargle(t, y_obs, dy, omega, generalized=True)

    #------------------------------------------------------------
    # Get significance via bootstrap
    D = lomb_scargle_bootstrap(t, y_obs, dy, omega, generalized=True,
                               N_bootstraps=1000, random_state=0)
    sig1, sig5 = np.percentile(D, [99, 95])

    #------------------------------------------------------------
    # Plot the results
    fig = plt.figure(figsize=(5, 3.75))

    # First panel: input data
    ax = fig.add_subplot(211)
    ax.errorbar(t, y_obs, dy, fmt='.k', lw=1, ecolor='gray')
    ax.plot([-2, 32], [10, 10], ':k', lw=1)

    ax.set_xlim(-2, 32)
    ax.set_xlabel('$t$')
    ax.set_ylabel('$y(t)$')

    if typo is False:
        ax.set_title('Corrected version')

    # Second panel: periodogram
    ax = fig.add_subplot(212)
    ax.plot(omega, P_S, '--k', lw=1, label='standard')
    ax.plot(omega, P_G, '-k', lw=1, label='generalized')
    ax.legend(loc=2)

    # plot the significance lines.
    xlim = (omega[0], omega[-1])
    ax.plot(xlim, [sig1, sig1], ':', c='black')
    ax.plot(xlim, [sig5, sig5], ':', c='black')

    # label BIC on the right side
    ax2 = ax.twinx()
    ax2.set_ylim(tuple(lomb_scargle_BIC(ax.get_ylim(), y_obs, dy)))
    ax2.set_ylabel(r'$\Delta BIC$')

    ax.set_xlabel('$\omega$')
    ax.set_ylabel(r'$P_{\rm LS}(\omega)$')
    ax.set_ylim(0, 1.1)


#######################################################################
# Redo the plot without the typo
# We need a larger data range to actually get significant power
# with actual noisy data

#------------------------------------------------------------
# Generate data where y is positive
np.random.seed(0)
N = 300
P = 0.3

t = P / 2 * np.random.random(N) + P * np.random.randint(1000, size=N)
y = 10 + np.sin(2 * np.pi * t / P)
dy = 0.1 + 0.1 * np.random.random(N)
y_obs = y + np.random.normal(dy)

omega_0 = 2 * np.pi / P


#------------------------------------------------------------
# Compute the Lomb-Scargle Periodogram
sig = np.array([0.1, 0.01, 0.001])
omega = np.linspace(20.5, 21.1, 1000)

P_S = lomb_scargle(t, y_obs, dy, omega, generalized=False)
P_G = lomb_scargle(t, y_obs, dy, omega, generalized=True)

#------------------------------------------------------------
# Get significance via bootstrap
D = lomb_scargle_bootstrap(t, y_obs, dy, omega, generalized=True,
                           N_bootstraps=1000, random_state=0)
sig1, sig5 = np.percentile(D, [99, 95])

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 3.75))

# First panel: input data
ax = fig.add_subplot(211)
ax.errorbar(t, y_obs, dy, fmt='.k', lw=1, ecolor='gray')
ax.plot([-20, 320], [10, 10], ':k', lw=1)

ax.set_xlim(-20, 320)
ax.set_xlabel('$t$')
ax.set_ylabel('$y(t)$')

# Second panel: periodogram
ax = fig.add_subplot(212)
ax.plot(omega, P_S, '--k', lw=1, label='standard')
ax.plot(omega, P_S, '-', c='gray', lw=1)
ax.plot(omega, P_G, '-k', lw=1, label='generalized')
ax.legend(loc=2)

# plot the significance lines.
xlim = (omega[0], omega[-1])
ax.plot(xlim, [sig1, sig1], ':', c='black')
ax.plot(xlim, [sig5, sig5], ':', c='black')

# label BIC on the right side
ax2 = ax.twinx()
ax2.set_ylim(tuple(lomb_scargle_BIC(ax.get_ylim(), y_obs, dy)))
ax2.set_ylabel(r'$\Delta BIC$')

ax.set_xlabel('$\omega$')
ax.set_ylabel(r'$P_{\rm LS}(\omega)$')
ax.set_xlim(xlim)
ax.set_ylim(0, 0.12)

plt.show()