This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Chirp wavelet PSDΒΆ

Figure 10.28

A wavelet PSD of the ten-parameter chirp signal similar to that analyzed in figure 10.27. Here, the signal with an amplitude of A = 0.8 is sampled in 4096 evenly spaced bins, and with Gaussian noise with sigma = 1. The two-dimensional wavelet PSD easily recovers the increase of characteristic chirp frequency with time.

../../_images_1ed/fig_chirp2_PSD_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt

from astroML.fourier import FT_continuous, IFT_continuous, wavelet_PSD

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


#------------------------------------------------------------
# Define the chirp signal
def chirp(t, T, A, phi, omega, beta):
    signal = A * np.sin(phi + omega * (t - T) + beta * (t - T) ** 2)
    signal[t < T] = 0
    return signal


def background(t, b0, b1, Omega1, Omega2):
    return b0 + b1 * np.sin(Omega1 * t) * np.sin(Omega2 * t)

N = 4096
t = np.linspace(-50, 50, N)
h_true = chirp(t, -20, 0.8, 0, 0.2, 0.02)
h = h_true + np.random.normal(0, 1, N)

#------------------------------------------------------------
# Compute the wavelet PSD
f0 = np.linspace(0.04, 0.6, 100)
wPSD = wavelet_PSD(t, h, f0, Q=1.0)

#------------------------------------------------------------
# Plot the  results
fig = plt.figure(figsize=(5, 3.75))
fig.subplots_adjust(hspace=0.05, left=0.1, right=0.95, bottom=0.1, top=0.95)

# Top: plot the data
ax = fig.add_subplot(211)
ax.plot(t + 50, h, '-', c='#AAAAAA')
ax.plot(t + 50, h_true, '-k')

ax.text(0.02, 0.95, "Input Signal: chirp",
        ha='left', va='top', transform=ax.transAxes,
        bbox=dict(boxstyle='round', fc='w', ec='k'))

ax.set_xlim(0, 100)
ax.set_ylim(-2.9, 2.9)
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.set_ylabel('$h(t)$')

# Bottom: plot the 2D PSD
ax = fig.add_subplot(212)
ax.imshow(wPSD, origin='lower', aspect='auto',
          extent=[t[0] + 50, t[-1] + 50, f0[0], f0[-1]],
          cmap=plt.cm.binary)

ax.text(0.02, 0.95, ("Wavelet PSD"), color='w',
        ha='left', va='top', transform=ax.transAxes)

ax.set_xlim(0, 100)
ax.set_ylim(0.04, 0.6001)
ax.set_xlabel('$t$')
ax.set_ylabel('$f_0$')

plt.show()