This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Wavelet transform of a Noisy SpikeΒΆ

Figure 10.8

Localized frequency analysis using the wavelet transform. The upper panel shows the input signal, which consists of a Gaussian spike in the presence of white (Gaussian) noise (see figure 10.10). The middle panel shows an example wavelet. The lower panel shows the power spectral density as a function of the frequency f0 and the time t0, for Q = 0.3.

../../_images_1ed/fig_line_wavelet_PSD_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt

from astroML.fourier import FT_continuous, IFT_continuous

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


def wavelet(t, t0, f0, Q):
    return (np.exp(-(f0 / Q * (t - t0)) ** 2)
            * np.exp(2j * np.pi * f0 * (t - t0)))


def wavelet_FT(f, t0, f0, Q):
    # this is its fourier transform using
    # H(f) = integral[ h(t) exp(-2pi i f t) dt]
    return (np.sqrt(np.pi) * Q / f0
            * np.exp(-2j * np.pi * f * t0)
            * np.exp(-(np.pi * (f - f0) * Q / f0) ** 2))


def check_funcs(t0=1, f0=2, Q=3):
    t = np.linspace(-5, 5, 10000)
    h = wavelet(t, t0, f0, Q)

    f, H = FT_continuous(t, h)
    assert np.allclose(H, wavelet_FT(f, t0, f0, Q))

#------------------------------------------------------------
# Create the simulated dataset
np.random.seed(5)

t = np.linspace(-40, 40, 2001)[:-1]
h = np.exp(-0.5 * ((t - 20.) / 1.0) ** 2)
hN = h + np.random.normal(0, 0.5, size=h.shape)

#------------------------------------------------------------
# Compute the convolution via the continuous Fourier transform
# This is more exact than using the discrete transform, because
# we have an analytic expression for the FT of the wavelet.
Q = 0.3
f0 = 2 ** np.linspace(-3, -1, 100)

f, H = FT_continuous(t, hN)
W = np.conj(wavelet_FT(f, 0, f0[:, None], Q))
t, HW = IFT_continuous(f, H * W)

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 5))
fig.subplots_adjust(hspace=0.05, left=0.12, right=0.95, bottom=0.08, top=0.95)

# First panel: the signal
ax = fig.add_subplot(311)
ax.plot(t, hN, '-k', lw=1)

ax.text(0.02, 0.95, ("Input Signal:\n"
                     "Localized spike plus noise"),
        ha='left', va='top', transform=ax.transAxes)

ax.set_xlim(-40, 40)
ax.set_ylim(-1.2, 2.2)
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.set_ylabel('$h(t)$')

# Second panel: the wavelet
ax = fig.add_subplot(312)
W = wavelet(t, 0, 0.125, Q)
ax.plot(t, W.real, '-k', label='real part', lw=1)
ax.plot(t, W.imag, '--k', label='imag part', lw=1)

ax.legend(loc=1)
ax.text(0.02, 0.95, ("Example Wavelet\n"
                     "$t_0 = 0$, $f_0=1/8$, $Q=0.3$"),
        ha='left', va='top', transform=ax.transAxes)
ax.text(0.98, 0.05,
        (r"$w(t; t_0, f_0, Q) = e^{-[f_0 (t - t_0) / Q]^2}"
         "e^{2 \pi i f_0 (t - t_0)}$"),
        ha='right', va='bottom', transform=ax.transAxes)

ax.set_xlim(-40, 40)
ax.set_ylim(-1.4, 1.4)
ax.set_ylabel('$w(t; t_0, f_0, Q)$')
ax.xaxis.set_major_formatter(plt.NullFormatter())

# Third panel: the spectrogram
ax = fig.add_subplot(313)
ax.imshow(abs(HW) ** 2, origin='lower', aspect='auto', cmap=plt.cm.binary,
          extent=[t[0], t[-1], np.log2(f0)[0], np.log2(f0)[-1]])
ax.set_xlim(-40, 40)

ax.text(0.02, 0.95, ("Wavelet PSD"), color='w',
        ha='left', va='top', transform=ax.transAxes)

ax.set_ylim(np.log2(f0)[0], np.log2(f0)[-1])
ax.set_xlabel('$t$')
ax.set_ylabel('$f_0$')

ax.yaxis.set_major_locator(plt.MultipleLocator(1))
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, *args: ("1/%i"
                                                                 % (2 ** -x))))
plt.show()