This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Minimum component fitting procedureΒΆ

Figure 10.12

The intermediate steps of the minimum component filter procedure applied to the spectrum of a white dwarf from the SDSS data set (mjd= 52199, plate=659, fiber=381). The top panel shows the input spectrum; the masked sections of the input spectrum are shown by thin lines (i.e., step 1 of the process in Section 10.2.5). The bottom panel shows the PSD of the masked spectrum, after the linear fit has been subtracted (gray line). A simple low-pass filter (dashed line) is applied, and the resulting filtered spectrum (dark line) is used to construct the result shown in figure 10.13.

Minimum component filtering is explained in Wall & Jenkins, as well as Wall 1997, A&A 122:371. The minimum component algorithm is implemented in astroML.filters.min_component_filter

../../_images_1ed/fig_mincomp_procedure_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt

from scipy import fftpack

from astroML.fourier import PSD_continuous
from astroML.datasets import fetch_sdss_spectrum

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Fetch the spectrum from SDSS database & pre-process
plate = 659
mjd = 52199
fiber = 381

data = fetch_sdss_spectrum(plate, mjd, fiber)

lam = data.wavelength()
spec = data.spectrum

# wavelengths are logorithmically spaced: we'll work in log(lam)
loglam = np.log10(lam)

flag = (lam > 4000) & (lam < 5000)
lam = lam[flag]
loglam = loglam[flag]
spec = spec[flag]

lam = lam[:-1]
loglam = loglam[:-1]
spec = spec[:-1]

#----------------------------------------------------------------------
# First step: mask-out significant features
feature_mask = (((lam > 4080) & (lam < 4130)) |
                ((lam > 4315) & (lam < 4370)) |
                ((lam > 4830) & (lam < 4900)))

#----------------------------------------------------------------------
# Second step: fit a line to the unmasked portion of the spectrum
XX = loglam[:, None] ** np.arange(2)
beta = np.linalg.lstsq(XX[~feature_mask], spec[~feature_mask])[0]

spec_fit = np.dot(XX, beta)
spec_patched = spec - spec_fit
spec_patched[feature_mask] = 0

#----------------------------------------------------------------------
# Third step: Fourier transform the patched spectrum
N = len(loglam)
df = 1. / N / (loglam[1] - loglam[0])
f = fftpack.ifftshift(df * (np.arange(N) - N / 2.))
spec_patched_FT = fftpack.fft(spec_patched)

#----------------------------------------------------------------------
# Fourth step: Low-pass filter on the transform
filt = np.exp(- (0.01 * (abs(f) - 100.)) ** 2)
filt[abs(f) < 100] = 1

spec_filt_FT = spec_patched_FT * filt

#----------------------------------------------------------------------
# Fifth step: inverse Fourier transform, and add back the fit
spec_filt = fftpack.ifft(spec_filt_FT)
spec_filt += spec_fit

#----------------------------------------------------------------------
# plot results
fig = plt.figure(figsize=(5, 3.75))
fig.subplots_adjust(hspace=0.25)

ax = fig.add_subplot(211)
ax.plot(lam, spec, '-', c='gray')
ax.plot(lam, spec_patched + spec_fit, '-k')

ax.set_ylim(25, 110)

ax.set_xlabel(r'$\lambda\ {\rm(\AA)}$')
ax.set_ylabel('flux')

ax = fig.add_subplot(212)
factor = 15 * (loglam[1] - loglam[0])
ax.plot(fftpack.fftshift(f),
        factor * fftpack.fftshift(abs(spec_patched_FT) ** 1),
        '-', c='gray', label='masked/shifted spectrum')
ax.plot(fftpack.fftshift(f),
        factor * fftpack.fftshift(abs(spec_filt_FT) ** 1),
        '-k', label='filtered spectrum')
ax.plot(fftpack.fftshift(f),
        fftpack.fftshift(filt), '--k', label='filter')

ax.set_xlim(0, 2000)
ax.set_ylim(0, 1.1)

ax.set_xlabel('$f$')
ax.set_ylabel('scaled $PSD(f)$')

plt.show()