This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Fourier Reconstruction of RR-Lyrae TemplatesΒΆ

Figure 10.1

An example of a truncated Fourier representation of an RR Lyrae light curve. The thick dashed line shows the true curve; the gray lines show the approximation based on 1, 3, and 8 Fourier modes (sinusoids).

../../_images_1ed/fig_rrlyrae_reconstruct_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt

from astroML.datasets import fetch_rrlyrae_templates

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Load the RR Lyrae template
templates = fetch_rrlyrae_templates()
x, y = templates['115r'].T

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 5))
fig.subplots_adjust(hspace=0)

kvals = [1, 3, 8]
subplots = [311, 312, 313]

for (k, subplot) in zip(kvals, subplots):
    ax = fig.add_subplot(subplot)

    # Use FFT to fit a truncated Fourier series
    y_fft = np.fft.fft(y)
    y_fft[k + 1:-k] = 0
    y_fit = np.fft.ifft(y_fft).real

    # plot the true value and the k-term reconstruction
    ax.plot(np.concatenate([x, 1 + x]),
            np.concatenate([y, y]), '--k', lw=2)
    ax.plot(np.concatenate([x, 1 + x]),
            np.concatenate([y_fit, y_fit]), color='gray')

    label = "%i mode" % k
    if k > 1:
        label += 's'

    ax.text(0.02, 0.1, label, ha='left', va='bottom',
            transform=ax.transAxes)

    if subplot == subplots[-1]:
        ax.set_xlabel('phase')
    else:
        ax.xaxis.set_major_formatter(plt.NullFormatter())

    if subplot == subplots[1]:
        ax.set_ylabel('amplitude')
    ax.yaxis.set_major_formatter(plt.NullFormatter())

    ax.set_xlim(0, 2)
    ax.set_ylim(1.1, -0.1)

plt.show()