This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Bivariate GaussianΒΆ

Figure 3.22.

An example of data generated from a bivariate Gaussian distribution. The shaded pixels are a Hess diagram showing the density of points at each position.

../../_images_1ed/fig_bivariate_gaussian_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.patches import Ellipse
from astroML.stats.random import bivariate_normal

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Define the mean, principal axes, and rotation of the ellipse
mean = np.array([0, 0])
sigma_1 = 2
sigma_2 = 1
alpha = np.pi / 4

#------------------------------------------------------------
# Draw 10^5 points from a multivariate normal distribution
#
#   we use the bivariate_normal function from astroML.  A more
#   general function for this is numpy.random.multivariate_normal(),
#   which requires the user to specify the full covariance matrix.
#   bivariate_normal() generates this covariance matrix for the
#   given inputs.
np.random.seed(0)
x, cov = bivariate_normal(mean, sigma_1, sigma_2, alpha, size=100000,
                          return_cov=True)

sigma_x = np.sqrt(cov[0, 0])
sigma_y = np.sqrt(cov[1, 1])
sigma_xy = cov[0, 1]

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111)

# plot a 2D histogram/hess diagram of the points
H, bins = np.histogramdd(x, bins=2 * [np.linspace(-4.5, 4.5, 51)])
ax.imshow(H, origin='lower', cmap=plt.cm.binary, interpolation='nearest',
          extent=[bins[0][0], bins[0][-1], bins[1][0], bins[1][-1]])

# draw 1, 2, 3-sigma ellipses over the distribution
for N in (1, 2, 3):
    ax.add_patch(Ellipse(mean, N * sigma_1, N * sigma_2,
                         angle=alpha * 180. / np.pi, lw=1,
                         ec='k', fc='none'))

kwargs = dict(ha='left', va='top', transform=ax.transAxes)

ax.text(0.02, 0.98, r"$\sigma_1 = %i$" % sigma_1, **kwargs)
ax.text(0.02, 0.93, r"$\sigma_2 = %i$" % sigma_2, **kwargs)
ax.text(0.02, 0.88, r"$\alpha = \pi / %i$" % (np.pi / alpha), **kwargs)

ax.text(0.15, 0.98, r"$\sigma_x = %.2f$" % sigma_x, **kwargs)
ax.text(0.15, 0.93, r"$\sigma_y = %.2f$" % sigma_y, **kwargs)
ax.text(0.15, 0.88, r"$\sigma_{xy} = %.2f$" % sigma_xy, **kwargs)

ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

plt.show()