This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Bootstrap Calculations of Error on MeanΒΆ

Figure 4.3.

The bootstrap uncertainty estimates for the sample standard deviation \sigma (dashed line; see eq. 3.32) and \sigma_G (solid line; see eq. 3.36). The sample consists of N = 1000 values drawn from a Gaussian distribution with \mu = 0 and \sigma = 1. The bootstrap estimates are based on 10,000 samples. The thin lines show Gaussians with the widths determined as s / \sqrt{2(N - 1)} (eq. 3.35) for \sigma and 1.06 s / \sqrt{N} (eq. 3.37) for \sigma_G.

../../_images_1ed/fig_bootstrap_gaussian_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from scipy.stats import norm
from matplotlib import pyplot as plt

from astroML.resample import bootstrap
from astroML.stats import sigmaG

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

m = 1000  # number of points
n = 10000  # number of bootstraps

#------------------------------------------------------------
# sample values from a normal distribution
np.random.seed(123)
data = norm(0, 1).rvs(m)

#------------------------------------------------------------
# Compute bootstrap resamplings of data
mu1_bootstrap = bootstrap(data, n,  np.std, kwargs=dict(axis=1, ddof=1))
mu2_bootstrap = bootstrap(data, n, sigmaG, kwargs=dict(axis=1))

#------------------------------------------------------------
# Compute the theoretical expectations for the two distributions
x = np.linspace(0.8, 1.2, 1000)

sigma1 = 1. / np.sqrt(2 * (m - 1))
pdf1 = norm(1, sigma1).pdf(x)

sigma2 = 1.06 / np.sqrt(m)
pdf2 = norm(1, sigma2).pdf(x)

#------------------------------------------------------------
# Plot the results
fig, ax = plt.subplots(figsize=(5, 3.75))

ax.hist(mu1_bootstrap, bins=50, normed=True, histtype='step',
        color='blue', ls='dashed', label=r'$\sigma\ {\rm (std. dev.)}$')
ax.plot(x, pdf1, color='gray')

ax.hist(mu2_bootstrap, bins=50, normed=True, histtype='step',
        color='red', label=r'$\sigma_G\ {\rm (quartile)}$')
ax.plot(x, pdf2, color='gray')

ax.set_xlim(0.82, 1.18)

ax.set_xlabel(r'$\sigma$')
ax.set_ylabel(r'$p(\sigma|x,I)$')

ax.legend()

plt.show()