This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Lynden-Bell Luminosity functionΒΆ

Figure 4.10.

An example of computing the luminosity function for two u-r color-selected subsamples of SDSS galaxies using Lynden-Bell’s C- method. The galaxies are selected from the SDSS spectroscopic sample, with redshift in the range 0.08 < z < 0.12 and flux limited to r < 17.7. The left panels show the distribution of sources as a function of redshift and absolute magnitude. The distribution p(z, M) = rho(z) Phi(m) is obtained using Lynden-Bell’s method, with errors determined by 20 bootstrap resamples. The results are shown in the right panels. For the redshift distribution, we multiply the result by z^2 for clarity. Note that the most luminous galaxies belong to the photometrically red subsample, as discernible in the bottom-right panel.

../../_images_1ed/fig_lyndenbell_gals_1.png
114152 red galaxies
45010 blue galaxies
- using precomputed bootstrapped luminosity function results
- using precomputed bootstrapped luminosity function results
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import os
import numpy as np
from matplotlib import pyplot as plt

from scipy import interpolate, stats

from astroML.lumfunc import binned_Cminus, bootstrap_Cminus
from astroML.cosmology import Cosmology
from astroML.datasets import fetch_sdss_specgals

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Get the data and perform redshift/magnitude cuts
data = fetch_sdss_specgals()

z_min = 0.08
z_max = 0.12
m_max = 17.7

# redshift and magnitude cuts
data = data[data['z'] > z_min]
data = data[data['z'] < z_max]
data = data[data['petroMag_r'] < m_max]

# divide red sample and blue sample based on u-r color
ur = data['modelMag_u'] - data['modelMag_r']
flag_red = (ur > 2.22)
flag_blue = ~flag_red

data_red = data[flag_red]
data_blue = data[flag_blue]

# truncate sample (optional: speeds up computation)
#data_red = data_red[::10]
#data_blue = data_blue[::10]
print data_red.size, "red galaxies"
print data_blue.size, "blue galaxies"

#------------------------------------------------------------
# Distance Modulus calculation:
#  We need functions approximating mu(z) and z(mu)
#  where z is redshift and mu is distance modulus.
#  We'll accomplish this using the cosmology class and
#  scipy's cubic spline interpolation.
cosmo = Cosmology()
z_sample = np.linspace(0.01, 1.5, 100)
mu_sample = [cosmo.mu(z) for z in z_sample]
mu_z = interpolate.interp1d(z_sample, mu_sample)
z_mu = interpolate.interp1d(mu_sample, z_sample)

data = [data_red, data_blue]
titles = ['$u-r > 2.22$', '$u-r < 2.22$']
markers = ['o', '^']
archive_files = ['lumfunc_red.npz', 'lumfunc_blue.npz']


def compute_luminosity_function(z, m, M, m_max, archive_file):
    """Compute the luminosity function and archive in the given file.

    If the file exists, then the saved results are returned.
    """
    Mmax = m_max - (m - M)
    zmax = z_mu(m_max - M)

    if not os.path.exists(archive_file):
        print ("- computing bootstrapped luminosity function ",
               "for %i points" % len(z))

        zbins = np.linspace(0.08, 0.12, 21)
        Mbins = np.linspace(-24, -20.2, 21)
        dist_z, err_z, dist_M, err_M = bootstrap_Cminus(z, M, zmax, Mmax,
                                                        zbins, Mbins,
                                                        Nbootstraps=20,
                                                        normalize=True)
        np.savez(archive_file,
                 zbins=zbins, dist_z=dist_z, err_z=err_z,
                 Mbins=Mbins, dist_M=dist_M, err_M=err_M)
    else:
        print "- using precomputed bootstrapped luminosity function results"
        archive = np.load(archive_file)
        zbins = archive['zbins']
        dist_z = archive['dist_z']
        err_z = archive['err_z']
        Mbins = archive['Mbins']
        dist_M = archive['dist_M']
        err_M = archive['err_M']

    return zbins, dist_z, err_z, Mbins, dist_M, err_M


#------------------------------------------------------------
# Perform the computation and plot the results
fig = plt.figure(figsize=(5, 5))
fig.subplots_adjust(left=0.13, right=0.95, wspace=0.3,
                    bottom=0.08, top=0.95, hspace=0.2)

for i in range(2):
    m = data[i]['petroMag_r']
    z = data[i]['z']
    M = m - mu_z(z)

    # compute the luminosity function for the given subsample
    zbins, dist_z, err_z, Mbins, dist_M, err_M = \
        compute_luminosity_function(z, m, M, m_max, archive_files[i])

    #------------------------------------------------------------
    # First axes: plot the observed 2D distribution of (z, M)
    ax = fig.add_subplot(2, 2, 1 + 2 * i)
    H, xbins, ybins = np.histogram2d(z, M, bins=(np.linspace(0.08, 0.12, 31),
                                                 np.linspace(-23, -20, 41)))
    ax.imshow(H.T, origin='lower', aspect='auto',
              interpolation='nearest', cmap=plt.cm.binary,
              extent=(xbins[0], xbins[-1], ybins[0], ybins[-1]))

    # plot the cutoff curve
    zrange = np.linspace(0.07, 0.13, 100)
    Mmax = m_max - mu_z(zrange)
    ax.plot(zrange, Mmax, '-k')

    ax.text(0.95, 0.95, titles[i] + "\n$N = %i$" % len(z),
            ha='right', va='top',
            transform=ax.transAxes)

    ax.set_xlim(0.075, 0.125)
    ax.set_ylim(-22, -19.8)
    ax.set_xlabel('$z$')
    ax.set_ylabel('$M$')

    #------------------------------------------------------------
    # Second axes: plot the inferred 1D distribution in z
    ax2 = fig.add_subplot(2, 2, 2)
    factor = 0.08 ** 2 / (0.5 * (zbins[1:] + zbins[:-1])) ** 2
    ax2.errorbar(0.5 * (zbins[1:] + zbins[:-1]),
                 factor * dist_z, factor * err_z,
                 fmt='-k' + markers[i], ecolor='gray', lw=1, ms=4,
                 label=titles[i])

    #------------------------------------------------------------
    # Third axes: plot the inferred 1D distribution in M
    ax3 = fig.add_subplot(224, yscale='log')

    # truncate the bins so the plot looks better
    Mbins = Mbins[3:-1]
    dist_M = dist_M[3:-1]
    err_M = err_M[3:-1]

    ax3.errorbar(0.5 * (Mbins[1:] + Mbins[:-1]), dist_M, err_M,
                 fmt='-k' + markers[i], ecolor='gray', lw=1, ms=4,
                 label=titles[i])

#------------------------------------------------------------
# set labels and limits
ax2.legend(loc=1)
ax2.xaxis.set_major_locator(plt.MultipleLocator(0.01))
ax2.set_xlabel(r'$z$')
ax2.set_ylabel(r'$\rho(z) / [z / 0.08]^2$')
ax2.set_xlim(0.075, 0.125)
ax2.set_ylim(10, 25)

ax3.legend(loc=3)
ax3.xaxis.set_major_locator(plt.MultipleLocator(1.0))
ax3.set_xlabel(r'$M$')
ax3.set_ylabel(r'$\Phi(M)$')
ax3.set_xlim(-20, -23.5)
ax3.set_ylim(1E-5, 2)

plt.show()