This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Lynden-Bell C- setupΒΆ

Figure 4.8.

Illustration for the definition of a truncated data set, and for the comparable or associated subset used by the Lynden-Bell C- method. The sample is limited by x < xmax and y < ymax(x) (light-shaded area). Associated sets Ji and Jk are shown by the dark-shaded area.

../../_images_1ed/fig_lyndenbell_setup_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.patches import Rectangle

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Draw the schematic
fig = plt.figure(figsize=(5, 2.5))
fig.subplots_adjust(left=0.06, right=0.95, wspace=0.12)
ax1 = fig.add_subplot(121, xticks=[], yticks=[])
ax2 = fig.add_subplot(122, xticks=[], yticks=[])

# define a convenient function
max_func = lambda t: 1. / (0.5 + t) - 0.5

x = np.linspace(0, 1.0, 100)
ymax = max_func(x)
ymax[ymax > 1] = 1

# draw and label the common background
for ax in (ax1, ax2):
    ax.fill_between(x, 0, ymax, color='gray', alpha=0.5)

    ax.plot([-0.1, 1], [1, 1], '--k', lw=1)

    ax.text(0.7, 0.35, r'$y_{\rm max}(x)$', rotation=-30)

    ax.plot([1, 1], [0, 1], '--k', lw=1)
    ax.text(1.01, 0.5, r'$x_{\rm max}$', ha='left', va='center', rotation=90)

# draw and label J_i in the first axes
xi = 0.4
yi = 0.35
ax1.scatter([xi], [yi], s=16, lw=0, c='k')
ax1.text(xi + 0.02, yi + 0.02, ' $(x_i, y_i)$', ha='left', va='center')
ax1.add_patch(Rectangle((0, 0), xi, max_func(xi), ec='k', fc='gray',
                        linestyle='dashed', lw=1, alpha=0.5))
ax1.text(0.5 * xi, 0.5 * max_func(xi), '$J_i$', ha='center', va='center')

# draw and label J_k in the second axes
ax2.scatter([xi], [yi], s=16, lw=0, c='k')
ax2.text(xi + 0.02, yi + 0.02, ' $(x_k, y_k)$', ha='center', va='bottom')
ax2.add_patch(Rectangle((0, 0), max_func(yi), yi, ec='k', fc='gray',
                        linestyle='dashed', lw=1, alpha=0.5))
ax2.text(0.5 * max_func(yi), 0.5 * yi, '$J_k$', ha='center', va='center')

# adjust the limits of both axes
for ax in (ax1, ax2):
    ax.set_xlim(0, 1.1)
    ax.set_ylim(0, 1.1)
    ax.set_xlabel('$x$')
    ax.set_ylabel('$y$')

plt.show()