This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Gaussian/Gaussian distributionΒΆ

Figure 5.6

The distribution of 106 points drawn from \mathcal{N}(0,1) and sampled with heteroscedastic Gaussian errors with widths, e_i, uniformly distributed between 0 and 3. A linear superposition of these Gaussian distributions with widths equal to \sqrt{1 + e_i^2} results in a
non-Gaussian distribution. The best-fit Gaussians centered on the sample
median with widths equal to sample standard deviation and quartile-based
:math:sigma_G` (eq.3.36) are shown for comparison.

../../_images_1ed/fig_distribution_gaussgauss_1.png
anderson-darling A^2 = 3088.1
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import norm, anderson
from astroML.stats import mean_sigma, median_sigmaG

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Create distributions

# draw underlying points
np.random.seed(0)
Npts = 1E6
x = np.random.normal(loc=0, scale=1, size=Npts)

# add error for each point
e = 3 * np.random.random(Npts)
x += np.random.normal(0, e)

# compute anderson-darling test
A2, sig, crit = anderson(x)
print "anderson-darling A^2 = %.1f" % A2

# compute point statistics
mu_sample, sig_sample = mean_sigma(x, ddof=1)
med_sample, sigG_sample = median_sigmaG(x)

#------------------------------------------------------------
# plot the results
fig, ax = plt.subplots(figsize=(5, 3.75))
ax.hist(x, 100, histtype='stepfilled', alpha=0.2,
        color='k', normed=True)

# plot the fitting normal curves
x_sample = np.linspace(-15, 15, 1000)
ax.plot(x_sample, norm(mu_sample, sig_sample).pdf(x_sample),
        '-k', label='$\sigma$ fit')
ax.plot(x_sample, norm(med_sample, sigG_sample).pdf(x_sample),
        '--k', label='$\sigma_G$ fit')
ax.legend()

ax.set_xlim(-7.5, 7.5)
ax.set_xlabel('$x$')
ax.set_ylabel('$p(x)$')
plt.show()