This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Log-likelihood for Gaussian DistributionΒΆ

Figure5.4 An illustration of the logarithm of the posterior probability density function for \mu and \sigma, L_p(\mu,\sigma) (see eq. 5.58) for data drawn from a Gaussian distribution and N = 10, x = 1, and V = 4. The maximum of L_p is renormalized to 0, and color coded as shown in the legend. The maximum value of L_p is at \mu_0 = 1.0 and \sigma_0 = 1.8. The contours enclose the regions that contain 0.683, 0.955, and 0.997 of the cumulative (integrated) posterior probability.

../../_images_1ed/fig_likelihood_gaussian_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from astroML.plotting.mcmc import convert_to_stdev

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


def gauss_logL(xbar, V, n, sigma, mu):
    """Equation 5.57: gaussian likelihood"""
    return (-(n + 1) * np.log(sigma)
            - 0.5 * n * ((xbar - mu) ** 2 + V) / sigma ** 2)

#------------------------------------------------------------
# Define the grid and compute logL
sigma = np.linspace(1, 5, 70)
mu = np.linspace(-3, 5, 70)
xbar = 1
V = 4
n = 10

logL = gauss_logL(xbar, V, n, sigma[:, np.newaxis], mu)
logL -= logL.max()

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 3.75))
plt.imshow(logL, origin='lower',
           extent=(mu[0], mu[-1], sigma[0], sigma[-1]),
           cmap=plt.cm.binary,
           aspect='auto')
plt.colorbar().set_label(r'$\log(L)$')
plt.clim(-5, 0)

plt.contour(mu, sigma, convert_to_stdev(logL),
            levels=(0.683, 0.955, 0.997),
            colors='k')

plt.text(0.5, 0.93, r'$L(\mu,\sigma)\ \mathrm{for}\ \bar{x}=1,\ V=4,\ n=10$',
         bbox=dict(ec='k', fc='w', alpha=0.9),
         ha='center', va='center', transform=plt.gca().transAxes)

plt.xlabel(r'$\mu$')
plt.ylabel(r'$\sigma$')

plt.show()