This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Log-likelihood for Uniform DistributionΒΆ

Figure 5.12

An illustration of the logarithm of the posterior probability distribution L(\mu, W) (see eq. 5.77) for N = 100, \mu = 5, and W = 10. The maximum of L is renormalized to 0, and color coded on a scale from -5 to 0, as shown in the legend. The bottom panel shows the marginal posterior for \mu (see eq. 5.79), and the left panel shows the marginal posterior for W (see eq. 5.80).

../../_images_1ed/fig_likelihood_uniform_1.png
data extent: 0.0469547619255 9.88373838059
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


def uniform_logL(x, W, mu):
    """Equation 5.76:"""
    xmin = np.min(x)
    xmax = np.max(x)
    n = x.size

    res = np.zeros(mu.shape, dtype=float) - (n + 1) * np.log(W)
    res[(abs(xmin - mu) > 0.5 * W) | (abs(xmax - mu) > 0.5 * W)] = -np.inf

    return res

#------------------------------------------------------------
# Define the grid and compute logL
W = np.linspace(9.7, 10.7, 70)
mu = np.linspace(4.5, 5.5, 70)

np.random.seed(0)
x = 10 * np.random.random(100)

logL = uniform_logL(x, W[:, None], mu)
logL -= logL.max()

#------------------------------------------------------------
# Compute marginal likelihoods
n = x.size

p_mu = np.exp(logL).sum(0)
Wmin = x.max() - x.min()
p_W = (W - Wmin) / W ** (n + 1)
p_W[W < Wmin] = 0
p_W /= p_W.sum()

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 3.75))

# 2D likelihood plot
ax = fig.add_axes([0.35, 0.35, 0.45, 0.6], xticks=[], yticks=[])
logL[logL < -10] = -10  # truncate for clean plotting
plt.imshow(logL, origin='lower',
           extent=(mu[0], mu[-1], W[0], W[-1]),
           cmap=plt.cm.binary,
           aspect='auto')

# colorbar
cax = plt.axes([0.82, 0.35, 0.02, 0.6])
cb = plt.colorbar(cax=cax)
cb.set_label(r'$\log L(\mu, W)$')
plt.clim(-7, 0)

ax.text(0.5, 0.93, r'$L(\mu,W)\ \mathrm{uniform,\ n=100}$',
        bbox=dict(ec='k', fc='w', alpha=0.9),
        ha='center', va='center', transform=ax.transAxes)
ax.set_xlim(4.5, 5.5)
ax.set_ylim(9.7, 10.7)

ax1 = fig.add_axes([0.35, 0.1, 0.45, 0.23], yticks=[])
ax1.plot(mu, p_mu, '-k')
ax1.set_xlabel(r'$\mu$')
ax1.set_ylabel(r'$p(\mu)$')
ax1.set_xlim(4.5, 5.5)

ax2 = fig.add_axes([0.15, 0.35, 0.18, 0.6], xticks=[])
ax2.plot(p_W, W, '-k')
ax2.set_xlabel(r'$p(W)$')
ax2.set_ylabel(r'$W$')
ax2.set_xlim(ax2.get_xlim()[::-1])  # reverse x axis
ax2.set_ylim(9.7, 10.7)

print "data extent:", min(x), max(x)

plt.show()