This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Plot the posterior of mu vs g1 with outliersΒΆ

Figure 5.17

The marginal joint distribution between mu and g_i, as given by eq. 5.100. The left panel shows a point identified as bad (\hat{g_i|} = 0), while the right panel shows a point identified as good(\hat{g_i|} = 1).

../../_images_1ed/fig_outlier_likelihood_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import norm
from astroML.plotting.mcmc import convert_to_stdev

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


def p(mu, g1, xi, sigma1, sigma2):
    """Equation 5.97: marginalized likelihood over outliers"""
    L = (g1 * norm.pdf(xi[0], mu, sigma1) +
         (1 - g1) * norm.pdf(xi[0], mu, sigma2))

    mu = mu.reshape(mu.shape + (1,))
    g1 = g1.reshape(g1.shape + (1,))

    return L * np.prod(norm.pdf(xi[1:], mu, sigma1)
                       + norm.pdf(xi[1:], mu, sigma2), -1)

#------------------------------------------------------------
# Sample the points
np.random.seed(138)

N1 = 8
N2 = 2
sigma1 = 1
sigma2 = 3

sigmai = np.zeros(N1 + N2)
sigmai[N2:] = sigma1
sigmai[:N2] = sigma2

xi = np.random.normal(0, sigmai)

#------------------------------------------------------------
# Compute the marginalized posterior for the first and last point
mu = np.linspace(-5, 5, 71)
g1 = np.linspace(0, 1, 11)

L1 = p(mu[:, None], g1, xi, 1, 10)
L1 /= np.max(L1)

L2 = p(mu[:, None], g1, xi[::-1], 1, 10)
L2 /= np.max(L2)

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 2.5))
fig.subplots_adjust(left=0.1, right=0.95, wspace=0.05,
                    bottom=0.15, top=0.9)

ax1 = fig.add_subplot(121)
ax1.imshow(L1.T, origin='lower', aspect='auto', cmap=plt.cm.binary,
           extent=[mu[0], mu[-1], g1[0], g1[-1]])
ax1.contour(mu, g1, convert_to_stdev(np.log(L1).T),
            levels=(0.683, 0.955, 0.997),
            colors='k')
ax1.set_xlabel(r'$\mu$')
ax1.set_ylabel(r'$g_1$')

ax2 = fig.add_subplot(122)
ax2.imshow(L2.T, origin='lower', aspect='auto', cmap=plt.cm.binary,
           extent=[mu[0], mu[-1], g1[0], g1[-1]])
ax2.contour(mu, g1, convert_to_stdev(np.log(L2).T),
            levels=(0.683, 0.955, 0.997),
            colors='k')
ax2.set_xlabel(r'$\mu$')
ax2.yaxis.set_major_locator(plt.NullLocator())

plt.show()