This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

EM example: Gaussian Mixture ModelsΒΆ

Figure 6.6

A two-dimensional mixture of Gaussians for the stellar metallicity data. The left panel shows the number density of stars as a function of two measures of their chemical composition: metallicity ([Fe/H]) and alpha-element abundance ([alpha/Fe]). The right panel shows the density estimated using mixtures of Gaussians together with the positions and covariances (2-sigma levels) of those Gaussians. The center panel compares the information criteria AIC and BIC (see Sections 4.3.2 and 5.4.3).

../../_images_1ed/fig_EM_metallicity_1.png
@pickle_results: using precomputed results from 'GMM_metallicity.pkl'
best fit converged: True
BIC: n_components =  4
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import norm

from sklearn.mixture import GMM

from astroML.datasets import fetch_sdss_sspp
from astroML.decorators import pickle_results
from astroML.plotting.tools import draw_ellipse

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Get the Segue Stellar Parameters Pipeline data
data = fetch_sdss_sspp(cleaned=True)
X = np.vstack([data['FeH'], data['alphFe']]).T

# truncate dataset for speed
X = X[::5]

#------------------------------------------------------------
# Compute GMM models & AIC/BIC
N = np.arange(1, 14)


@pickle_results("GMM_metallicity.pkl")
def compute_GMM(N, covariance_type='full', n_iter=1000):
    models = [None for n in N]
    for i in range(len(N)):
        print N[i]
        models[i] = GMM(n_components=N[i], n_iter=n_iter,
                        covariance_type=covariance_type)
        models[i].fit(X)
    return models

models = compute_GMM(N)

AIC = [m.aic(X) for m in models]
BIC = [m.bic(X) for m in models]

i_best = np.argmin(BIC)
gmm_best = models[i_best]
print "best fit converged:", gmm_best.converged_
print "BIC: n_components =  %i" % N[i_best]

#------------------------------------------------------------
# compute 2D density
FeH_bins = 51
alphFe_bins = 51
H, FeH_bins, alphFe_bins = np.histogram2d(data['FeH'], data['alphFe'],
                                          (FeH_bins, alphFe_bins))

Xgrid = np.array(map(np.ravel,
                     np.meshgrid(0.5 * (FeH_bins[:-1]
                                        + FeH_bins[1:]),
                                 0.5 * (alphFe_bins[:-1]
                                        + alphFe_bins[1:])))).T
log_dens = gmm_best.score(Xgrid).reshape((51, 51))

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 1.66))
fig.subplots_adjust(wspace=0.45,
                    bottom=0.25, top=0.9,
                    left=0.1, right=0.97)

# plot density
ax = fig.add_subplot(131)
ax.imshow(H.T, origin='lower', interpolation='nearest', aspect='auto',
          extent=[FeH_bins[0], FeH_bins[-1],
                  alphFe_bins[0], alphFe_bins[-1]],
          cmap=plt.cm.binary)
ax.set_xlabel(r'$\rm [Fe/H]$')
ax.set_ylabel(r'$\rm [\alpha/Fe]$')
ax.xaxis.set_major_locator(plt.MultipleLocator(0.3))
ax.set_xlim(-1.101, 0.101)
ax.text(0.93, 0.93, "Input",
        va='top', ha='right', transform=ax.transAxes)

# plot AIC/BIC
ax = fig.add_subplot(132)
ax.plot(N, AIC, '-k', label='AIC')
ax.plot(N, BIC, ':k', label='BIC')
ax.legend(loc=1)
ax.set_xlabel('N components')
plt.setp(ax.get_yticklabels(), fontsize=7)

# plot best configurations for AIC and BIC
ax = fig.add_subplot(133)
ax.imshow(np.exp(log_dens),
          origin='lower', interpolation='nearest', aspect='auto',
          extent=[FeH_bins[0], FeH_bins[-1],
                  alphFe_bins[0], alphFe_bins[-1]],
          cmap=plt.cm.binary)

ax.scatter(gmm_best.means_[:, 0], gmm_best.means_[:, 1], c='w')
for mu, C, w in zip(gmm_best.means_, gmm_best.covars_, gmm_best.weights_):
    draw_ellipse(mu, C, scales=[1.5], ax=ax, fc='none', ec='k')

ax.text(0.93, 0.93, "Converged",
        va='top', ha='right', transform=ax.transAxes)

ax.set_xlim(-1.101, 0.101)
ax.set_ylim(alphFe_bins[0], alphFe_bins[-1])
ax.xaxis.set_major_locator(plt.MultipleLocator(0.3))
ax.set_xlabel(r'$\rm [Fe/H]$')
ax.set_ylabel(r'$\rm [\alpha/Fe]$')

plt.show()