This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Number of Clusters for Gaussian MixturesΒΆ

Figure 6.9

The BIC-optimized number of components in a Gaussian mixture model as a function of the sample size. All three samples (with 100, 1000, and 10,000 points) are drawn from the same distribution: two narrow foreground Gaussians and two wide background Gaussians. The top-right panel shows the BIC as a function of the number of components in the mixture. The remaining panels show the distribution of points in the sample and the 1, 2, and 3 standard deviation contours of the best-fit mixture model.

../../_images_1ed/fig_GMM_nclusters_1.png
100 points convergence: [True, True, True, True, True, True, True]
1000 points convergence: [True, True, True, True, True, True, True]
10000 points convergence: [True, True, True, True, True, True, True]
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import norm
from sklearn.mixture import GMM
from astroML.utils import convert_2D_cov
from astroML.plotting.tools import draw_ellipse

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Set up the dataset
#  We'll use scikit-learn's Gaussian Mixture Model to sample
#  data from a mixture of Gaussians.  The usual way of using
#  this involves fitting the mixture to data: we'll see that
#  below.  Here we'll set the internal means, covariances,
#  and weights by-hand.

# we'll define clusters as (mu, sigma1, sigma2, alpha, frac)
clusters = [((50, 50), 20, 20, 0, 0.1),
            ((40, 40), 10, 10, np.pi / 6, 0.6),
            ((80, 80), 5, 5, np.pi / 3, 0.2),
            ((60, 60), 30, 30, 0, 0.1)]

gmm_input = GMM(len(clusters), covariance_type='full')
gmm_input.means_ = np.array([c[0] for c in clusters])
gmm_input.covars_ = np.array([convert_2D_cov(*c[1:4]) for c in clusters])
gmm_input.weights_ = np.array([c[4] for c in clusters])
gmm_input.weights_ /= gmm_input.weights_.sum()

#------------------------------------------------------------
# Compute and plot the results
fig = plt.figure(figsize=(5, 5))
fig.subplots_adjust(left=0.11, right=0.9, bottom=0.11, top=0.9,
                    hspace=0, wspace=0)
ax_list = [fig.add_subplot(s) for s in [221, 223, 224]]
ax_list.append(fig.add_axes([0.62, 0.62, 0.28, 0.28]))

linestyles = ['-', '--', ':']

grid = np.linspace(-5, 105, 70)
Xgrid = np.array(np.meshgrid(grid, grid))
Xgrid = Xgrid.reshape(2, -1).T

Nclusters = np.arange(1, 8)
for Npts, ax, ls in zip([100, 1000, 10000], ax_list, linestyles):
    np.random.seed(1)
    X = gmm_input.sample(Npts)

    # find best number of clusters via BIC
    clfs = [GMM(N, n_iter=500).fit(X)
            for N in Nclusters]
    BICs = np.array([clf.bic(X) for clf in clfs])
    print "%i points convergence:" % Npts, [clf.converged_ for clf in clfs]

    # plot the BIC
    ax_list[3].plot(Nclusters, BICs / Npts, ls, c='k',
                    label="N=%i" % Npts)

    clf = clfs[np.argmin(BICs)]
    log_dens = clf.score(Xgrid).reshape((70, 70))

    # scatter the points
    ax.plot(X[:, 0], X[:, 1], ',k', alpha=0.3, zorder=1)

    # plot the components
    for i in range(clf.n_components):
        mean = clf.means_[i]
        cov = clf.covars_[i]
        if cov.ndim == 1:
            cov = np.diag(cov)
        draw_ellipse(mean, cov, ax=ax, fc='none', ec='k', zorder=2)

    # label the plot
    ax.text(0.05, 0.95, "N = %i points" % Npts,
            ha='left', va='top', transform=ax.transAxes,
            bbox=dict(fc='w', ec='k'))

    ax.set_xlim(-5, 105)
    ax.set_ylim(-5, 105)


ax_list[0].xaxis.set_major_formatter(plt.NullFormatter())
ax_list[2].yaxis.set_major_formatter(plt.NullFormatter())

for i in (0, 1):
    ax_list[i].set_ylabel('$y$')

for j in (1, 2):
    ax_list[j].set_xlabel('$x$')

ax_list[-1].legend(loc=1)

ax_list[-1].set_xlabel('n. clusters')
ax_list[-1].set_ylabel('$BIC / N$')
ax_list[-1].set_ylim(16, 18.5)

plt.show()