This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Comparison of PCA and Manifold LearningΒΆ

Figure 7.8

A comparison of PCA and manifold learning. The top-left panel shows an example S-shaped data set (a two-dimensional manifold in a three-dimensional space). PCA identifies three principal components within the data. Projection onto the first two PCA components results in a mixing of the colors along the manifold. Manifold learning (LLE and IsoMap) preserves the local structure when projecting the data, preventing the mixing of the colors.

../../_images_1ed/fig_S_manifold_PCA_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
import matplotlib
from matplotlib import ticker

from sklearn import manifold, datasets, decomposition

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# generate the S-curve dataset
np.random.seed(0)

n_points = 1100
n_neighbors = 10
out_dim = 2

X, color = datasets.samples_generator.make_s_curve(n_points)

# change the proportions to emphasize the weakness of PCA
X[:, 1] -= 1
X[:, 1] *= 1.5
X[:, 2] *= 0.5

#------------------------------------------------------------
# Compute the projections
pca = decomposition.PCA(out_dim)
Y_pca = pca.fit_transform(X)

lle = manifold.LocallyLinearEmbedding(n_neighbors, out_dim, method='modified')
Y_lle = lle.fit_transform(X)

iso = manifold.Isomap(n_neighbors, out_dim)
Y_iso = iso.fit_transform(X)

#------------------------------------------------------------
# plot the 3D dataset
fig = plt.figure(figsize=(5, 5))
fig.subplots_adjust(left=0.05, right=0.95,
                    bottom=0.05, top=0.9)
try:
    # matplotlib 1.0+ has a toolkit for generating 3D plots
    from mpl_toolkits.mplot3d import Axes3D
    ax1 = fig.add_subplot(221, projection='3d',
                          xticks=[], yticks=[], zticks=[])
    ax1.scatter(X[:, 0], X[:, 1], X[:, 2], c=color,
                cmap=plt.cm.jet, s=9, lw=0)
    ax1.view_init(11, -73)

except:
    # In older versions, we'll have to wing it with a 2D plot
    ax1 = fig.add_subplot(221)

    # Create a projection to mimic 3D scatter-plot
    X_proj = X / (X.max(0) - X.min(0))
    X_proj -= X_proj.mean(0)
    R = np.array([[0.5, 0.0],
                  [0.1, 0.1],
                  [0.0, 0.5]])
    R /= np.sqrt(np.sum(R ** 2, 0))
    X_proj = np.dot(X_proj, R)

    # change line width with depth
    lw = X[:, 1].copy()
    lw -= lw.min()
    lw /= lw.max()
    lw = 1 - lw

    ax1.scatter(X_proj[:, 0], X_proj[:, 1], c=color,
                cmap=plt.cm.jet, s=9, lw=lw, zorder=10)

    # draw the shaded axes
    ax1.fill([-0.7, -0.3, -0.3, -0.7, -0.7],
             [-0.7, -0.3, 0.7, 0.3, -0.7], ec='k', fc='#DDDDDD', zorder=0)
    ax1.fill([-0.3, 0.7, 0.7, -0.3, -0.3],
             [-0.3, -0.3, 0.7, 0.7, -0.3], ec='k', fc='#DDDDDD', zorder=0)
    ax1.fill([-0.7, 0.3, 0.7, -0.3, -0.7],
             [-0.7, -0.7, -0.3, -0.3, -0.7], ec='k', fc='#DDDDDD', zorder=0)

    ax1.xaxis.set_major_locator(ticker.NullLocator())
    ax1.yaxis.set_major_locator(ticker.NullLocator())

#------------------------------------------------------------
# Plot the projections
subplots = [222, 223, 224]
titles = ['PCA projection', 'LLE projection', 'IsoMap projection']
Yvals = [Y_pca, Y_lle, Y_iso]

for (Y, title, subplot) in zip(Yvals, titles, subplots):
    ax = fig.add_subplot(subplot)
    ax.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.jet, s=9, lw=0)
    ax.set_title(title)
    ax.set_xticks([])
    ax.set_yticks([])

plt.show()