This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Plot a visual representation of an SVDΒΆ

Figure 7.3

Singular value decomposition (SVD) can factorize an N x K matrix into U \Sigma V^T. There are different conventions for computing the SVD in the literature, and this figure illustrates the convention used in this text. The matrix of singular values \Sigma is always a square matrix of size [R x R] where R = min(N, K). The shape of the resulting U and V matrices depends on whether N or K is larger. The columns of the matrix U are called the left-singular vectors, and the columns of the matrix V are called the right-singular vectors. The columns are orthonormal bases, and satisfy U^T U = V^T V = I.

../../_images_1ed/fig_svd_visual_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.patches import Rectangle

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


# Define a function to create a rectangle
def labeled_rect(ax, center, width, height, text,
                 stripe='vert', N=7, color='#CCCCCC'):
    left = center[0] - 0.5 * width
    bottom = center[1] - 0.5 * height
    ax.add_patch(Rectangle((left, bottom), width, height,
                           fill=True, color=color, ec='k'))
    ax.text(center[0], center[1], text,
            fontsize=14, ha='center', va='center',
            bbox=dict(ec=color, fc=color))

    if stripe == 'vert':
        xlocs = np.linspace(center[0] - 0.5 * width,
                            center[0] + 0.5 * width,
                            N + 2)[1:-1]
        for x in xlocs:
            plt.plot([x, x],
                     [center[1] - 0.5 * height,
                      center[1] + 0.5 * height], '-k')

    elif stripe == 'horiz':
        ylocs = np.linspace(center[1] - 0.5 * height,
                            center[1] + 0.5 * height,
                            N + 2)[1:-1]
        for y in ylocs:
            plt.plot([center[0] - 0.5 * width,
                      center[0] + 0.5 * width],
                     [y, y], '-k')

    elif stripe == 'diag':
        plt.plot([center[0] - 0.5 * width, center[0] + 0.5 * width],
                 [center[1] + 0.5 * height, center[1] - 0.5 * height], '-k')
    else:
        raise ValueError("unrecognized stripe type")

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 2.5))
fig.subplots_adjust(left=0, bottom=0,
                    right=1, top=1)
ax = fig.add_subplot(111, xticks=[], yticks=[], frameon=False)

labeled_rect(ax, (0.3, 0.75), 0.5, 0.25, '$X_1$', 'horiz')
labeled_rect(ax, (0.975, 0.75), 0.25, 0.25, '$U_1$', 'vert')
labeled_rect(ax, (1.275, 0.75), 0.25, 0.25, r'$\Sigma_1$', 'diag')
labeled_rect(ax, (1.7, 0.75), 0.5, 0.25, r'$V_1^T$', 'horiz')

labeled_rect(ax, (0.3, 0.3), 0.25, 0.5, r'$X_2$', 'horiz', N=15)
labeled_rect(ax, (0.975, 0.3), 0.25, 0.5, r'$U_2$', 'vert')
labeled_rect(ax, (1.275, 0.3), 0.25, 0.25, r'$\Sigma_2$', 'diag')
labeled_rect(ax, (1.575, 0.3), 0.25, 0.25, r'$V_2^T$', 'horiz')

ax.text(0.7, 0.75, '$=$', fontsize=14, ha='center', va='center')
ax.text(0.7, 0.3, '$=$', fontsize=14, ha='center', va='center')

ax.set_xlim(0, 2)
ax.set_ylim(0, 1)

plt.show()