This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Huber Loss FunctionΒΆ

Figure 8.8

An example of fitting a simple linear model to data which includes outliers (data is from table 1 of Hogg et al 2010). A comparison of linear regression using the squared-loss function (equivalent to ordinary least-squares regression) and the Huber loss function, with c = 1 (i.e., beyond 1 standard deviation, the loss becomes linear).

../../_images_1ed/fig_huber_loss_1.png
Optimization terminated successfully.
         Current function value: 289.963723
         Iterations: 62
         Function evaluations: 117
Optimization terminated successfully.
         Current function value: 43.439758
         Iterations: 59
         Function evaluations: 115
[   1.07674745  213.27350923]
[  1.96473118  70.00573832]
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt

from scipy import optimize
from astroML.datasets import fetch_hogg2010test

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Get data: this includes outliers
data = fetch_hogg2010test()
x = data['x']
y = data['y']
dy = data['sigma_y']


# Define the standard squared-loss function
def squared_loss(m, b, x, y, dy):
    y_fit = m * x + b
    return np.sum(((y - y_fit) / dy) ** 2, -1)


# Define the log-likelihood via the Huber loss function
def huber_loss(m, b, x, y, dy, c=2):
    y_fit = m * x + b
    t = abs((y - y_fit) / dy)
    flag = t > c
    return np.sum((~flag) * (0.5 * t ** 2) - (flag) * c * (0.5 * c - t), -1)

f_squared = lambda beta: squared_loss(beta[0], beta[1], x=x, y=y, dy=dy)
f_huber = lambda beta: huber_loss(beta[0], beta[1], x=x, y=y, dy=dy, c=1)

#------------------------------------------------------------
# compute the maximum likelihood using the huber loss
beta0 = (2, 30)
beta_squared = optimize.fmin(f_squared, beta0)
beta_huber = optimize.fmin(f_huber, beta0)

print beta_squared
print beta_huber

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111)

x_fit = np.linspace(0, 350, 10)
ax.plot(x_fit, beta_squared[0] * x_fit + beta_squared[1], '--k',
        label="squared loss:\n $y=%.2fx + %.1f$" % tuple(beta_squared))
ax.plot(x_fit, beta_huber[0] * x_fit + beta_huber[1], '-k',
        label="Huber loss:\n $y=%.2fx + %.1f$" % tuple(beta_huber))
ax.legend(loc=4)

ax.errorbar(x, y, dy, fmt='.k', lw=1, ecolor='gray')

ax.set_xlim(0, 350)
ax.set_ylim(100, 700)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

plt.show()