Example of a Beta distribution

Figure 3.17.

This shows an example of a beta distribution with various parameters. We’ll generate the distribution using:

dist = scipy.stats.beta(...)

Where … should be filled in with the desired distribution parameters Once we have defined the distribution parameters in this way, these distribution objects have many useful methods; for example:

  • dist.pmf(x) computes the Probability Mass Function at values x in the case of discrete distributions

  • dist.pdf(x) computes the Probability Density Function at values x in the case of continuous distributions

  • dist.rvs(N) computes N random variables distributed according to the given distribution

Many further options exist; refer to the documentation of scipy.stats for more details.

../../_images/fig_beta_distribution_1.png

# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from scipy.stats import beta
from matplotlib import pyplot as plt

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
if "setup_text_plots" not in globals():
    from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Define the distribution parameters to be plotted
alpha_values = [0.5, 1.5, 3.0, 0.5]
beta_values = [0.5, 1.5, 3.0, 1.5]
linestyles = ['-', '--', ':', '-.']
x = np.linspace(0, 1, 1002)[1:-1]

#------------------------------------------------------------
# plot the distributions
fig, ax = plt.subplots(figsize=(5, 3.75))

for a, b, ls in zip(alpha_values, beta_values, linestyles):
    dist = beta(a, b)

    plt.plot(x, dist.pdf(x), ls=ls, c='black',
             label=r'$\alpha=%.1f,\ \beta=%.1f$' % (a, b))

plt.xlim(0, 1)
plt.ylim(0, 3)

plt.xlabel('$x$')
plt.ylabel(r'$p(x|\alpha,\beta)$')
plt.title('Beta Distribution')

plt.legend(loc=0)
plt.show()