This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Flux ErrorsΒΆ

Figure 3.5.

An example of Gaussian flux errors becoming non-Gaussian magnitude errors. The dotted line shows the location of the mean flux; note that this is not coincident with the peak of the magnitude distribution.

../../_images_1ed/fig_flux_errors_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import norm

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Create our data

# generate 10000 normally distributed points
np.random.seed(1)
dist = norm(1, 0.25)
flux = dist.rvs(10000)
flux_fit = np.linspace(0.001, 2, 1000)
pdf_flux_fit = dist.pdf(flux_fit)

# transform this distribution into magnitude space
mag = -2.5 * np.log10(flux)
mag_fit = -2.5 * np.log10(flux_fit)
pdf_mag_fit = pdf_flux_fit.copy()
pdf_mag_fit[1:] /= abs(mag_fit[1:] - mag_fit[:-1])
pdf_mag_fit /= np.dot(pdf_mag_fit[1:], abs(mag_fit[1:] - mag_fit[:-1]))

#------------------------------------------------------------
# Plot the result
fig = plt.figure(figsize=(5, 2.5))
fig.subplots_adjust(bottom=0.17, top=0.9,
                    left=0.12, right=0.95, wspace=0.3)

# first plot the flux distribution
ax = fig.add_subplot(121)
ax.hist(flux, bins=np.linspace(0, 2, 50),
        histtype='stepfilled', fc='gray', alpha=0.5, normed=True)
ax.plot(flux_fit, pdf_flux_fit, '-k')
ax.plot([1, 1], [0, 2], ':k', lw=1)
ax.set_xlim(-0.1, 2.1)
ax.set_ylim(0, 1.8)

ax.set_xlabel(r'${\rm flux}$')
ax.set_ylabel(r'$p({\rm flux})$')
ax.yaxis.set_major_locator(plt.MultipleLocator(0.4))
ax.text(0.04, 0.98, r'${\rm 20\%\ flux\ error}$',
        ha='left', va='top', transform=ax.transAxes,
        bbox=dict(ec='none', fc='w'))

# next plot the magnitude distribution
ax = fig.add_subplot(122)
ax.hist(mag, bins=np.linspace(-1, 2, 50),
        histtype='stepfilled', fc='gray', alpha=0.5, normed=True)
ax.plot(mag_fit, pdf_mag_fit, '-k')
ax.plot([0, 0], [0, 2], ':k', lw=1)
ax.set_xlim(-1.1, 1.1)
ax.set_ylim(0, 1.8)
ax.yaxis.set_major_locator(plt.MultipleLocator(0.4))
ax.text(0.04, 0.98, r'${\rm mag} = -2.5\log_{10}({\rm flux})$',
        ha='left', va='top', transform=ax.transAxes,
        bbox=dict(ec='none', fc='w'))

ax.set_xlabel(r'${\rm mag}$')
ax.set_ylabel(r'$p({\rm mag})$')

plt.show()