This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Kurtosis and SkewΒΆ

Figure 3.6.

An example of distributions with different skewness \Sigma (top panel) and kurtosis K (bottom panel). The modified Gaussian in the upper panel is a normal distribution multiplied by a Gram-Charlier series (see eq. 4.70), with a0 = 2, a1 = 1, and a2 = 0.5. The log-normal has \sigma = 1.2.

../../_images_1ed/fig_kurtosis_skew_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from scipy import stats
from matplotlib import pyplot as plt

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

fig = plt.figure(figsize=(5, 6.25))
fig.subplots_adjust(right=0.95, hspace=0.05, bottom=0.07, top=0.95)

# First show distributions with different skeq
ax = fig.add_subplot(211)
x = np.linspace(-8, 8, 1000)
N = stats.norm(0, 1)

l1, = ax.plot(x, N.pdf(x), '-k',
              label=r'${\rm Gaussian,}\ \Sigma=0$')

l2, = ax.plot(x, 0.5 * N.pdf(x) * (2 + x + 0.5 * (x * x - 1)),
              '--k', label=r'${\rm mod.\ Gauss,}\ \Sigma=-0.36$')
l3, = ax.plot(x[499:], stats.lognorm(1.2).pdf(x[499:]), '-.k',
              label=r'$\rm log\ normal,\ \Sigma=11.2$')

ax.set_xlim(-5, 5)
ax.set_ylim(0, 0.7001)
ax.set_ylabel('$p(x)$')
ax.xaxis.set_major_formatter(plt.NullFormatter())

# trick to show multiple legends
leg1 = ax.legend([l1], [l1.get_label()], loc=1)
leg2 = ax.legend([l2, l3], (l2.get_label(), l3.get_label()), loc=2)
ax.add_artist(leg1)
ax.set_title('Skew $\Sigma$ and Kurtosis $K$')

# next show distributions with different kurtosis
ax = fig.add_subplot(212)
x = np.linspace(-5, 5, 1000)
l1, = ax.plot(x, stats.laplace(0, 1).pdf(x), '--k',
              label=r'${\rm Laplace,}\ K=+3$')
l2, = ax.plot(x, stats.norm(0, 1).pdf(x), '-k',
              label=r'${\rm Gaussian,}\ K=0$')
l3, = ax.plot(x, stats.cosine(0, 1).pdf(x), '-.k',
              label=r'${\rm Cosine,}\ K=-0.59$')
l4, = ax.plot(x, stats.uniform(-2, 4).pdf(x), ':k',
              label=r'${\rm Uniform,}\ K=-1.2$')

ax.set_xlim(-5, 5)
ax.set_ylim(0, 0.55)
ax.set_xlabel('$x$')
ax.set_ylabel('$p(x)$')

# trick to show multiple legends
leg1 = ax.legend((l1, l2), (l1.get_label(), l2.get_label()), loc=2)
leg2 = ax.legend((l3, l4), (l3.get_label(), l4.get_label()), loc=1)
ax.add_artist(leg1)

plt.show()