This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Selection of Histogram bin sizeΒΆ

Figure 5.20

The results of Scott’s rule, the Freedman-Diaconis rule, and Knuth’s rule for selecting the optimal bin width for a histogram. These histograms are based on 5000 points drawn from the shown pdfs. On the left is a simple normal distribution. On the right is a Laplacian distribution at the center, with two small Gaussian peaks added in the wings.

../../_images_1ed/fig_hist_binsize_1.png
Optimization terminated successfully.
         Current function value: -2984.022998
         Iterations: 19
         Function evaluations: 50
Optimization terminated successfully.
         Current function value: -4651.454792
         Iterations: 18
         Function evaluations: 51
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from scipy import stats
from astroML.plotting import hist

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


def plot_labeled_histogram(style, data, name,
                           x, pdf_true, ax=None,
                           hide_x=False,
                           hide_y=False):
    if ax is not None:
        ax = plt.axes(ax)

    counts, bins, patches = hist(data, bins=style, ax=ax,
                                 color='k', histtype='step', normed=True)
    ax.text(0.95, 0.93, '%s:\n%i bins' % (name, len(counts)),
            transform=ax.transAxes,
            ha='right', va='top')

    ax.fill(x, pdf_true, '-', color='#CCCCCC', zorder=0)

    if hide_x:
        ax.xaxis.set_major_formatter(plt.NullFormatter())
    if hide_y:
        ax.yaxis.set_major_formatter(plt.NullFormatter())

    ax.set_xlim(-5, 5)

    return ax


#------------------------------------------------------------
# Set up distributions:
Npts = 5000
np.random.seed(0)
x = np.linspace(-6, 6, 1000)

# Gaussian distribution
data_G = stats.norm(0, 1).rvs(Npts)
pdf_G = stats.norm(0, 1).pdf(x)

# Non-Gaussian distribution
distributions = [stats.laplace(0, 0.4),
                 stats.norm(-4.0, 0.2),
                 stats.norm(4.0, 0.2)]

weights = np.array([0.8, 0.1, 0.1])
weights /= weights.sum()

data_NG = np.hstack(d.rvs(int(w * Npts))
                    for (d, w) in zip(distributions, weights))
pdf_NG = sum(w * d.pdf(x)
             for (d, w) in zip(distributions, weights))

#------------------------------------------------------------
# Plot results
fig = plt.figure(figsize=(5, 2.5))
fig.subplots_adjust(hspace=0, left=0.07, right=0.95, wspace=0.05, bottom=0.15)
ax = [fig.add_subplot(3, 2, i + 1) for i in range(6)]

# first column: Gaussian distribution
plot_labeled_histogram('scotts', data_G, 'Scott\'s Rule', x, pdf_G,
                       ax=ax[0], hide_x=True, hide_y=True)
plot_labeled_histogram('freedman', data_G, 'Freed.-Diac.', x, pdf_G,
                       ax=ax[2], hide_x=True, hide_y=True)
plot_labeled_histogram('knuth', data_G, 'Knuth\'s Rule', x, pdf_G,
                       ax=ax[4], hide_x=False, hide_y=True)

ax[0].set_title('Gaussian distribution')
ax[2].set_ylabel('$p(x)$')
ax[4].set_xlabel('$x$')

# second column: non-gaussian distribution
plot_labeled_histogram('scotts', data_NG, 'Scott\'s Rule', x, pdf_NG,
                       ax=ax[1], hide_x=True, hide_y=True)
plot_labeled_histogram('freedman', data_NG, 'Freed.-Diac.', x, pdf_NG,
                       ax=ax[3], hide_x=True, hide_y=True)
plot_labeled_histogram('knuth', data_NG, 'Knuth\'s Rule', x, pdf_NG,
                       ax=ax[5], hide_x=False, hide_y=True)

ax[1].set_title('non-Gaussian distribution')
ax[5].set_xlabel('$x$')

plt.show()