This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Histogram for Double-gaussian model testΒΆ

Figure 5.23

A sample of 200 points drawn from a Gaussian mixture model used to illustrate model selection with MCMC.

../../_images_1ed/fig_model_comparison_hist_1.png
WARNING: DeprecationWarning: Function eval is deprecated; GMM.eval was renamed to GMM.score_samples in 0.14 and will be removed in 0.16. [sklearn.utils]
WARNING: DeprecationWarning: Function eval is deprecated; GMM.eval was renamed to GMM.score_samples in 0.14 and will be removed in 0.16. [sklearn.utils]
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import norm
from astroML.density_estimation import GaussianMixture1D

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Generate the data
mu1_in = 0
sigma1_in = 0.3
mu2_in = 1
sigma2_in = 1
ratio_in = 1.5
N = 200

np.random.seed(10)
gm = GaussianMixture1D([mu1_in, mu2_in],
                       [sigma1_in, sigma2_in],
                       [ratio_in, 1])
x_sample = gm.sample(N)

#------------------------------------------------------------
# Get the MLE fit for a single gaussian
sample_mu = np.mean(x_sample)
sample_std = np.std(x_sample, ddof=1)

#------------------------------------------------------------
# Plot the sampled data
fig, ax = plt.subplots(figsize=(5, 3.75))

ax.hist(x_sample, 20, histtype='stepfilled', normed=True, fc='#CCCCCC')
x = np.linspace(-2.1, 4.1, 1000)

factor1 = ratio_in / (1. + ratio_in)
factor2 = 1. / (1. + ratio_in)

ax.plot(x, gm.pdf(x), '-k', label='true distribution')
ax.plot(x, gm.pdf_individual(x), ':k')

ax.plot(x, norm.pdf(x, sample_mu, sample_std), '--k', label='best fit normal')

ax.legend(loc=1)

ax.set_xlim(-2.1, 4.1)

ax.set_xlabel('$x$')
ax.set_ylabel('$p(x)$')
ax.set_title('Input pdf and sampled data')
ax.text(0.95, 0.80, ('$\mu_1 = 0;\ \sigma_1=0.3$\n'
                     '$\mu_2=1;\ \sigma_2=1.0$\n'
                     '$\mathrm{ratio}=1.5$'),
        transform=ax.transAxes, ha='right', va='top')
plt.show()