This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

MCMC Model Comparison

Figure 5.24

The top-right panel shows the posterior pdf for mu and sigma for a single Gaussian fit to the data shown in figure 5.23. The remaining panels show the projections of the five-dimensional pdf for a Gaussian mixture model with two components. Contours are based on a 10,000 point MCMC chain.

../../_images_1ed/fig_model_comparison_mcmc_1.png
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt

from scipy.special import gamma
from scipy.stats import norm
from sklearn.neighbors import BallTree
from astroML.density_estimation import GaussianMixture1D
from astroML.plotting import plot_mcmc
# hack to fix an import issue in older versions of pymc
import scipy
scipy.derivative = scipy.misc.derivative
import pymc

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


def get_logp(S, model):
    """compute log(p) given a pyMC model"""
    M = pymc.MAP(model)
    traces = np.array([S.trace(s)[:] for s in S.stochastics])
    logp = np.zeros(traces.shape[1])
    for i in range(len(logp)):
        logp[i] = -M.func(traces[:, i])
    return logp


def estimate_bayes_factor(traces, logp, r=0.05, return_list=False):
    """Estimate the bayes factor using the local density of points"""
    D, N = traces.shape

    # compute volume of a D-dimensional sphere of radius r
    Vr = np.pi ** (0.5 * D) / gamma(0.5 * D + 1) * (r ** D)

    # use neighbor count within r as a density estimator
    bt = BallTree(traces.T)
    count = bt.query_radius(traces.T, r=r, count_only=True)

    BF = logp + np.log(N) + np.log(Vr) - np.log(count)

    if return_list:
        return BF
    else:
        p25, p50, p75 = np.percentile(BF, [25, 50, 75])
        return p50, 0.7413 * (p75 - p25)


#------------------------------------------------------------
# Generate the data
mu1_in = 0
sigma1_in = 0.3
mu2_in = 1
sigma2_in = 1
ratio_in = 1.5
N = 200

np.random.seed(10)
gm = GaussianMixture1D([mu1_in, mu2_in],
                       [sigma1_in, sigma2_in],
                       [ratio_in, 1])
x_sample = gm.sample(N)

#------------------------------------------------------------
# Set up pyMC model: single gaussian
#  2 parameters: (mu, sigma)
M1_mu = pymc.Uniform('M1_mu', -5, 5, value=0)
M1_log_sigma = pymc.Uniform('M1_log_sigma', -10, 10, value=0)


@pymc.deterministic
def M1_sigma(M1_log_sigma=M1_log_sigma):
    return np.exp(M1_log_sigma)


@pymc.deterministic
def M1_tau(M1_sigma=M1_sigma):
    return 1. / M1_sigma ** 2

M1 = pymc.Normal('M1', M1_mu, M1_tau, observed=True, value=x_sample)
model1 = dict(M1_mu=M1_mu, M1_log_sigma=M1_log_sigma,
              M1_sigma=M1_sigma,
              M1_tau=M1_tau, M1=M1)


#------------------------------------------------------------
# Set up pyMC model: double gaussian
#  5 parameters: (mu1, mu2, sigma1, sigma2, ratio)

def doublegauss_like(x, mu1, mu2, sigma1, sigma2, ratio):
    """log-likelihood for double gaussian"""
    r1 = ratio / (1. + ratio)
    r2 = 1 - r1
    L = r1 * norm(mu1, sigma1).pdf(x) + r2 * norm(mu2, sigma2).pdf(x)
    L[L == 0] = 1E-16  # prevent divide-by-zero error
    logL = np.log(L).sum()
    if np.isinf(logL):
        raise pymc.ZeroProbability
    else:
        return logL


def rdoublegauss(mu1, mu2, sigma1, sigma2, ratio, size=None):
    """random variable from double gaussian"""
    r1 = ratio / (1. + ratio)
    r2 = 1 - r1
    R = np.asarray(np.random.random(size))

    Rshape = R.shape
    R = np.atleast1d(R)

    mask1 = (R < r1)
    mask2 = ~mask1
    N1 = mask1.sum()
    N2 = R.size - N1

    R[mask1] = norm(mu1, sigma1).rvs(N1)
    R[mask2] = norm(mu2, sigma2).rvs(N2)

    return R.reshape(Rshape)

DoubleGauss = pymc.stochastic_from_dist('doublegauss',
                                        logp=doublegauss_like,
                                        random=rdoublegauss,
                                        dtype=np.float,
                                        mv=True)

# set up our Stochastic variables, mu1, mu2, sigma1, sigma2, ratio
M2_mu1 = pymc.Uniform('M2_mu1', -5, 5, value=0)
M2_mu2 = pymc.Uniform('M2_mu2', -5, 5, value=1)

M2_log_sigma1 = pymc.Uniform('M2_log_sigma1', -10, 10, value=0)
M2_log_sigma2 = pymc.Uniform('M2_log_sigma2', -10, 10, value=0)


@pymc.deterministic
def M2_sigma1(M2_log_sigma1=M2_log_sigma1):
    return np.exp(M2_log_sigma1)


@pymc.deterministic
def M2_sigma2(M2_log_sigma2=M2_log_sigma2):
    return np.exp(M2_log_sigma2)

M2_ratio = pymc.Uniform('M2_ratio', 1E-3, 1E3, value=1)

M2 = DoubleGauss('M2', M2_mu1, M2_mu2, M2_sigma1, M2_sigma2, M2_ratio,
                 observed=True, value=x_sample)

model2 = dict(M2_mu1=M2_mu1, M2_mu2=M2_mu2,
              M2_log_sigma1=M2_log_sigma1, M2_log_sigma2=M2_log_sigma2,
              M2_sigma1=M2_sigma1, M2_sigma2=M2_sigma2,
              M2_ratio=M2_ratio, M2=M2)


#------------------------------------------------------------
# Set up MCMC sampling
def compute_MCMC_models(Niter=10000, burn=1000, rseed=0):
    pymc.numpy.random.seed(rseed)

    S1 = pymc.MCMC(model1)
    S1.sample(iter=Niter, burn=burn)
    trace1 = np.vstack([S1.trace('M1_mu')[:],
                        S1.trace('M1_sigma')[:]])
    logp1 = get_logp(S1, model1)

    S2 = pymc.MCMC(model2)
    S2.sample(iter=Niter, burn=burn)
    trace2 = np.vstack([S2.trace('M2_mu1')[:],
                        S2.trace('M2_mu2')[:],
                        S2.trace('M2_sigma1')[:],
                        S2.trace('M2_sigma2')[:],
                        S2.trace('M2_ratio')[:]])
    logp2 = get_logp(S2, model2)

    return trace1, logp1, trace2, logp2

trace1, logp1, trace2, logp2 = compute_MCMC_models()


#------------------------------------------------------------
# Compute Odds ratio with density estimation technique
BF1, dBF1 = estimate_bayes_factor(trace1, logp1, r=0.02)
BF2, dBF2 = estimate_bayes_factor(trace2, logp2, r=0.05)


#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 5))

labels = [r'$\mu_1$',
          r'$\mu_2$',
          r'$\sigma_1$',
          r'$\sigma_2$',
          r'${\rm ratio}$']

true_values = [mu1_in,
               mu2_in,
               sigma1_in,
               sigma2_in,
               ratio_in]

limits = [(-0.24, 0.12),
          (0.55, 1.75),
          (0.15, 0.45),
          (0.55, 1.3),
          (0.25, 2.1)]

# we assume mu1 < mu2, but the results may be switched
#  due to the symmetry of the problem.  If so, switch back
if np.median(trace2[0]) > np.median(trace2[1]):
    trace2 = trace2[[1, 0, 3, 2, 4], :]
    N2_norm_mu = N2.mu[N2.M2_mu2, N2.M2_mu1,
                       N2.M2_sigma2, N2.M2_sigma1, N2.M2_ratio]
    N2_norm_Sig = N2.C[N2.M2_mu2, N2.M2_mu1,
                       N2.M2_sigma2, N2.M2_sigma1, N2.M2_ratio]

# Plot the simple 2-component model
ax, = plot_mcmc(trace1, fig=fig, bounds=[0.6, 0.6, 0.95, 0.95],
                limits=[(0.3, 0.8), (0.75, 1.15)],
                labels=[r'$\mu$', r'$\sigma$'], colors='k')

ax.text(0.05, 0.95, "Single Gaussian fit", va='top', ha='left',
        transform=ax.transAxes)

# Plot the 5-component model
ax_list = plot_mcmc(trace2, limits=limits, labels=labels,
                    true_values=true_values, fig=fig,
                    bounds=(0.12, 0.12, 0.95, 0.95),
                    colors='k')
for ax in ax_list:
    for axis in [ax.xaxis, ax.yaxis]:
        axis.set_major_locator(plt.MaxNLocator(4))

plt.show()