This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Cross Validation ExamplesΒΆ

Figure 8.14

The top panel shows the root-mean-square (rms) training error and validation error for our toy model (eq. 8.75) as a function of the polynomial degree d. The horizontal dotted line indicates the level of intrinsic scatter in the data. Models with polyno- mial degree from 3 to 5 minimize the validation rms error. The bottom panel shows the Bayesian information criterion (BIC) for the training and cross-validation subsamples. According to the BIC, a degree-3 polynomial gives the best fit to this data set.

../../_images_1ed/fig_cross_val_C_1.png
WARNING: RankWarning: Polyfit may be poorly conditioned [numpy.lib.polynomial]
WARNING: RankWarning: Polyfit may be poorly conditioned [numpy.lib.polynomial]
WARNING: RankWarning: Polyfit may be poorly conditioned [numpy.lib.polynomial]
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import ticker
from matplotlib.patches import FancyArrow

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


#------------------------------------------------------------
# Define our functional form
def func(x, dy=0.1):
    return np.random.normal(np.sin(x) * x, dy)

#------------------------------------------------------------
# select the (noisy) data
np.random.seed(0)
x = np.linspace(0, 3, 22)[1:-1]
dy = 0.1
y = func(x, dy)

#------------------------------------------------------------
# Select the cross-validation points
np.random.seed(1)
x_cv = 3 * np.random.random(20)
y_cv = func(x_cv)

x_fit = np.linspace(0, 3, 1000)

#------------------------------------------------------------
# Third figure: plot errors as a function of polynomial degree d
d = np.arange(0, 21)
training_err = np.zeros(d.shape)
crossval_err = np.zeros(d.shape)

fig = plt.figure(figsize=(5, 5))
for i in range(len(d)):
    p = np.polyfit(x, y, d[i])
    training_err[i] = np.sqrt(np.sum((np.polyval(p, x) - y) ** 2)
                              / len(y))
    crossval_err[i] = np.sqrt(np.sum((np.polyval(p, x_cv) - y_cv) ** 2)
                              / len(y_cv))

BIC_train = np.sqrt(len(y)) * training_err / dy + d * np.log(len(y))
BIC_crossval = np.sqrt(len(y)) * crossval_err / dy + d * np.log(len(y))

ax = fig.add_subplot(211)
ax.plot(d, crossval_err, '--k', label='cross-validation')
ax.plot(d, training_err, '-k', label='training')
ax.plot(d, 0.1 * np.ones(d.shape), ':k')

ax.set_xlim(0, 14)
ax.set_ylim(0, 0.8)

ax.set_xlabel('polynomial degree')
ax.set_ylabel('rms error')
ax.legend(loc=2)

ax = fig.add_subplot(212)
ax.plot(d, BIC_crossval, '--k', label='cross-validation')
ax.plot(d, BIC_train, '-k', label='training')

ax.set_xlim(0, 14)
ax.set_ylim(0, 100)

ax.legend(loc=2)
ax.set_xlabel('polynomial degree')
ax.set_ylabel('BIC')

plt.show()