This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Cross Validation Examples: part 2ΒΆ

Figure 8.13

Three models of increasing complexity applied to our toy dataset (eq. 8.75). The d = 2 model, like the linear model in figure 8.12, suffers from high bias, and underfits the data. The d = 19 model suffers from high variance, and overfits the data. The d = 3 model is a good compromise between these extremes.

../../_images_1ed/fig_cross_val_B_1.png
WARNING: RankWarning: Polyfit may be poorly conditioned [numpy.lib.polynomial]
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import ticker
from matplotlib.patches import FancyArrow

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


#------------------------------------------------------------
# Define our functional form
def func(x, dy=0.1):
    return np.random.normal(np.sin(x) * x, dy)

#------------------------------------------------------------
# select the (noisy) data
np.random.seed(0)
x = np.linspace(0, 3, 22)[1:-1]
dy = 0.1
y = func(x, dy)

#------------------------------------------------------------
# Select the cross-validation points
np.random.seed(1)
x_cv = 3 * np.random.random(20)
y_cv = func(x_cv)

x_fit = np.linspace(0, 3, 1000)

#------------------------------------------------------------
# Second figure: plot fit for several orders of polynomial
fig = plt.figure(figsize=(5, 2.5))
fig.subplots_adjust(wspace=0.03, bottom=0.15,
                    top=0.95, left=0.07, right=0.97)

for i, d in enumerate([2, 3, 19]):
    ax = fig.add_subplot(131 + i)
    ax.scatter(x, y, marker='x', c='k', s=30)

    p = np.polyfit(x, y, d)
    y_fit = np.polyval(p, x_fit)

    ax.plot(x_fit, y_fit, '-b')
    ax.set_ylim(-0.1, 2.1)
    ax.set_xlim(-0.2, 3.2)
    if i in (1, 2):
        ax.yaxis.set_major_formatter(plt.NullFormatter())
    else:
        ax.set_ylabel('$y$')
    ax.set_xlabel('$x$')
    ax.text(0.08, 0.94, "d = %i" % d, transform=ax.transAxes,
            ha='left', va='top',
            bbox=dict(ec='k', fc='w', pad=10))

plt.show()