Nonlinear cosmology fit to mu vs zΒΆ
Figure 8.5
Cosmology fit to the standard cosmological integral. Errors in mu are a factor of ten smaller than for the sample used in figure 8.2. Contours are 1-sigma, 2-sigma, and 3-sigma for the posterior (uniform prior in and ). The dashed line shows flat cosmology. The dotted lines show the input values.
@pickle_results: using precomputed results from 'mu_z_nonlinear.pkl'
# Author: Jake VanderPlas
# License: BSD
# The figure produced by this code is published in the textbook
# "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
# For more information, see http://astroML.github.com
# To report a bug or issue, use the following forum:
# https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt
from astroML.datasets import generate_mu_z
from astroML.cosmology import Cosmology
from astroML.plotting.mcmc import convert_to_stdev
from astroML.decorators import pickle_results
#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX. This may
# result in an error if LaTeX is not installed on your system. In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)
#------------------------------------------------------------
# Generate the data
z_sample, mu_sample, dmu = generate_mu_z(100, z0=0.3,
dmu_0=0.05, dmu_1=0.004,
random_state=1)
#------------------------------------------------------------
# define a log likelihood in terms of the parameters
# beta = [omegaM, omegaL]
def compute_logL(beta):
cosmo = Cosmology(omegaM=beta[0], omegaL=beta[1])
mu_pred = np.array(map(cosmo.mu, z_sample))
return - np.sum(0.5 * ((mu_sample - mu_pred) / dmu) ** 2)
#------------------------------------------------------------
# Define a function to compute (and save to file) the log-likelihood
@pickle_results('mu_z_nonlinear.pkl')
def compute_mu_z_nonlinear(Nbins=50):
omegaM = np.linspace(0.05, 0.75, Nbins)
omegaL = np.linspace(0.4, 1.1, Nbins)
logL = np.empty((Nbins, Nbins))
for i in range(len(omegaM)):
#print '%i / %i' % (i + 1, len(omegaM))
for j in range(len(omegaL)):
logL[i, j] = compute_logL([omegaM[i], omegaL[j]])
return omegaM, omegaL, logL
omegaM, omegaL, res = compute_mu_z_nonlinear()
res -= np.max(res)
#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 2.5))
fig.subplots_adjust(left=0.1, right=0.95, wspace=0.25,
bottom=0.15, top=0.9)
# left plot: the data and best-fit
ax = fig.add_subplot(121)
whr = np.where(res == np.max(res))
omegaM_best = omegaM[whr[0][0]]
omegaL_best = omegaL[whr[1][0]]
cosmo = Cosmology(omegaM=omegaM_best, omegaL=omegaL_best)
z_fit = np.linspace(0.04, 2, 100)
mu_fit = np.asarray(map(cosmo.mu, z_fit))
ax.plot(z_fit, mu_fit, '-k')
ax.errorbar(z_sample, mu_sample, dmu, fmt='.k', ecolor='gray')
ax.set_xlim(0, 1.8)
ax.set_ylim(36, 46)
ax.set_xlabel('$z$')
ax.set_ylabel(r'$\mu$')
ax.text(0.04, 0.96, "%i observations" % len(z_sample),
ha='left', va='top', transform=ax.transAxes)
# right plot: the likelihood
ax = fig.add_subplot(122)
ax.contour(omegaM, omegaL, convert_to_stdev(res.T),
levels=(0.683, 0.955, 0.997),
colors='k')
ax.plot([0, 1], [1, 0], '--k')
ax.plot([0, 1], [0.73, 0.73], ':k')
ax.plot([0.27, 0.27], [0, 2], ':k')
ax.set_xlim(0.05, 0.75)
ax.set_ylim(0.4, 1.1)
ax.set_xlabel(r'$\Omega_M$')
ax.set_ylabel(r'$\Omega_\Lambda$')
plt.show()