This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Nonlinear cosmology fit to mu vs zΒΆ

Figure 8.5

Cosmology fit to the standard cosmological integral. Errors in mu are a factor of ten smaller than for the sample used in figure 8.2. Contours are 1-sigma, 2-sigma, and 3-sigma for the posterior (uniform prior in \Omega_M and \Omega_\Lambda). The dashed line shows flat cosmology. The dotted lines show the input values.

../../_images_1ed/fig_nonlinear_mu_z_1.png
@pickle_results: using precomputed results from 'mu_z_nonlinear.pkl'
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from matplotlib import pyplot as plt

from astroML.datasets import generate_mu_z
from astroML.cosmology import Cosmology
from astroML.plotting.mcmc import convert_to_stdev
from astroML.decorators import pickle_results

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# Generate the data
z_sample, mu_sample, dmu = generate_mu_z(100, z0=0.3,
                                         dmu_0=0.05, dmu_1=0.004,
                                         random_state=1)


#------------------------------------------------------------
# define a log likelihood in terms of the parameters
#  beta = [omegaM, omegaL]
def compute_logL(beta):
    cosmo = Cosmology(omegaM=beta[0], omegaL=beta[1])
    mu_pred = np.array(map(cosmo.mu, z_sample))
    return - np.sum(0.5 * ((mu_sample - mu_pred) / dmu) ** 2)


#------------------------------------------------------------
# Define a function to compute (and save to file) the log-likelihood
@pickle_results('mu_z_nonlinear.pkl')
def compute_mu_z_nonlinear(Nbins=50):
    omegaM = np.linspace(0.05, 0.75, Nbins)
    omegaL = np.linspace(0.4, 1.1, Nbins)

    logL = np.empty((Nbins, Nbins))

    for i in range(len(omegaM)):
        #print '%i / %i' % (i + 1, len(omegaM))
        for j in range(len(omegaL)):
            logL[i, j] = compute_logL([omegaM[i], omegaL[j]])

    return omegaM, omegaL, logL

omegaM, omegaL, res = compute_mu_z_nonlinear()
res -= np.max(res)

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(5, 2.5))
fig.subplots_adjust(left=0.1, right=0.95, wspace=0.25,
                    bottom=0.15, top=0.9)

# left plot: the data and best-fit
ax = fig.add_subplot(121)
whr = np.where(res == np.max(res))
omegaM_best = omegaM[whr[0][0]]
omegaL_best = omegaL[whr[1][0]]
cosmo = Cosmology(omegaM=omegaM_best, omegaL=omegaL_best)

z_fit = np.linspace(0.04, 2, 100)
mu_fit = np.asarray(map(cosmo.mu, z_fit))

ax.plot(z_fit, mu_fit, '-k')
ax.errorbar(z_sample, mu_sample, dmu, fmt='.k', ecolor='gray')

ax.set_xlim(0, 1.8)
ax.set_ylim(36, 46)

ax.set_xlabel('$z$')
ax.set_ylabel(r'$\mu$')

ax.text(0.04, 0.96, "%i observations" % len(z_sample),
        ha='left', va='top', transform=ax.transAxes)

# right plot: the likelihood
ax = fig.add_subplot(122)

ax.contour(omegaM, omegaL, convert_to_stdev(res.T),
           levels=(0.683, 0.955, 0.997),
           colors='k')

ax.plot([0, 1], [1, 0], '--k')
ax.plot([0, 1], [0.73, 0.73], ':k')
ax.plot([0.27, 0.27], [0, 2], ':k')

ax.set_xlim(0.05, 0.75)
ax.set_ylim(0.4, 1.1)

ax.set_xlabel(r'$\Omega_M$')
ax.set_ylabel(r'$\Omega_\Lambda$')

plt.show()