This documentation is for astroML version 0.2

This page

Links

astroML Mailing List

GitHub Issue Tracker

Videos

Scipy 2012 (15 minute talk)

Scipy 2013 (20 minute talk)

Citing

If you use the software, please consider citing astroML.

Total Least Squares FigureΒΆ

Figure 8.6

A linear fit to data with correlated errors in x and y. In the literature, this is often referred to as total least squares or errors-in-variables fitting. The left panel shows the lines of best fit; the right panel shows the likelihood contours in slope/intercept space. The points are the same set used for the examples in Hogg, Bovy & Lang 2010.

../../_images_1ed/fig_total_least_squares_1.png
Optimization terminated successfully.
         Current function value: 55.711167
         Iterations: 88
         Function evaluations: 164
# Author: Jake VanderPlas
# License: BSD
#   The figure produced by this code is published in the textbook
#   "Statistics, Data Mining, and Machine Learning in Astronomy" (2013)
#   For more information, see http://astroML.github.com
#   To report a bug or issue, use the following forum:
#    https://groups.google.com/forum/#!forum/astroml-general
import numpy as np
from scipy import optimize
from matplotlib import pyplot as plt
from matplotlib.patches import Ellipse

from astroML.linear_model import TLS_logL
from astroML.plotting.mcmc import convert_to_stdev
from astroML.datasets import fetch_hogg2010test

#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)


#------------------------------------------------------------
# Define some convenience functions

# translate between typical slope-intercept representation,
# and the normal vector representation
def get_m_b(beta):
    b = np.dot(beta, beta) / beta[1]
    m = -beta[0] / beta[1]
    return m, b


def get_beta(m, b):
    denom = (1 + m * m)
    return np.array([-b * m / denom, b / denom])


# compute the ellipse pricipal axes and rotation from covariance
def get_principal(sigma_x, sigma_y, rho_xy):
    sigma_xy2 = rho_xy * sigma_x * sigma_y

    alpha = 0.5 * np.arctan2(2 * sigma_xy2,
                             (sigma_x ** 2 - sigma_y ** 2))
    tmp1 = 0.5 * (sigma_x ** 2 + sigma_y ** 2)
    tmp2 = np.sqrt(0.25 * (sigma_x ** 2 - sigma_y ** 2) ** 2 + sigma_xy2 ** 2)

    return np.sqrt(tmp1 + tmp2), np.sqrt(tmp1 - tmp2), alpha


# plot ellipses
def plot_ellipses(x, y, sigma_x, sigma_y, rho_xy, factor=2, ax=None):
    if ax is None:
        ax = plt.gca()

    sigma1, sigma2, alpha = get_principal(sigma_x, sigma_y, rho_xy)

    for i in range(len(x)):
        ax.add_patch(Ellipse((x[i], y[i]),
                             factor * sigma1[i], factor * sigma2[i],
                             alpha[i] * 180. / np.pi,
                             fc='none', ec='k'))

#------------------------------------------------------------
# We'll use the data from table 1 of Hogg et al. 2010
data = fetch_hogg2010test()
data = data[5:]  # no outliers
x = data['x']
y = data['y']
sigma_x = data['sigma_x']
sigma_y = data['sigma_y']
rho_xy = data['rho_xy']

#------------------------------------------------------------
# Find best-fit parameters
X = np.vstack((x, y)).T
dX = np.zeros((len(x), 2, 2))
dX[:, 0, 0] = sigma_x ** 2
dX[:, 1, 1] = sigma_y ** 2
dX[:, 0, 1] = dX[:, 1, 0] = rho_xy * sigma_x * sigma_y

min_func = lambda beta: -TLS_logL(beta, X, dX)
beta_fit = optimize.fmin(min_func,
                         x0=[-1, 1])

#------------------------------------------------------------
# Plot the data and fits
fig = plt.figure(figsize=(5, 2.5))
fig.subplots_adjust(left=0.1, right=0.95, wspace=0.25,
                    bottom=0.15, top=0.9)

#------------------------------------------------------------
# first let's visualize the data
ax = fig.add_subplot(121)
ax.scatter(x, y, c='k', s=9)
plot_ellipses(x, y, sigma_x, sigma_y, rho_xy, ax=ax)

#------------------------------------------------------------
# plot the best-fit line
m_fit, b_fit = get_m_b(beta_fit)
x_fit = np.linspace(0, 300, 10)
ax.plot(x_fit, m_fit * x_fit + b_fit, '-k')

ax.set_xlim(40, 250)
ax.set_ylim(100, 600)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

#------------------------------------------------------------
# plot the likelihood contour in m, b
ax = fig.add_subplot(122)
m = np.linspace(1.7, 2.8, 100)
b = np.linspace(-60, 110, 100)
logL = np.zeros((len(m), len(b)))

for i in range(len(m)):
    for j in range(len(b)):
        logL[i, j] = TLS_logL(get_beta(m[i], b[j]), X, dX)

ax.contour(m, b, convert_to_stdev(logL.T),
           levels=(0.683, 0.955, 0.997),
           colors='k')
ax.set_xlabel('slope')
ax.set_ylabel('intercept')
ax.set_xlim(1.7, 2.8)
ax.set_ylim(-60, 110)

plt.show()