Corrected Spectra¶
The script examples/datasets/compute_sdss_pca.py uses an iterative PCA technique to reconstruct masked regions of SDSS spectra. Several of the resulting spectra are shown below.
# Author: Jake VanderPlas <vanderplas@astro.washington.edu>
# License: BSD
# The figure is an example from astroML: see http://astroML.github.com
import numpy as np
import matplotlib.pyplot as plt
from astroML.datasets import sdss_corrected_spectra
#------------------------------------------------------------
# Fetch the data
data = sdss_corrected_spectra.fetch_sdss_corrected_spectra()
spectra = sdss_corrected_spectra.reconstruct_spectra(data)
lam = sdss_corrected_spectra.compute_wavelengths(data)
#------------------------------------------------------------
# Plot several spectra
fig = plt.figure(figsize=(8, 8))
fig.subplots_adjust(hspace=0)
for i in range(5):
ax = fig.add_subplot(511 + i)
ax.plot(lam, spectra[i], '-k')
if i < 4:
ax.xaxis.set_major_formatter(plt.NullFormatter())
else:
ax.set_xlabel(r'wavelength $(\AA)$')
ax.yaxis.set_major_formatter(plt.NullFormatter())
ax.set_ylabel('flux')
plt.show()