11.2.2.3. astroML.density_estimation.EmpiricalDistribution¶
-
class
astroML.density_estimation.
EmpiricalDistribution
(data)[source]¶ Empirically learn a distribution from one-dimensional data
- Parameters
- dataone-dimensional array
input data
Notes
This function works by approximating the inverse of the cumulative distribution using an efficient spline fit to the sorted values.
Examples
>>> import numpy as np >>> np.random.seed(0) >>> x = np.random.normal(size=10000) # normally-distributed variables >>> x.mean(), x.std() (-0.018433720158265783, 0.98755656817612003) >>> x2 = EmpiricalDistribution(x).rvs(10000) >>> x2.mean(), x2.std() (-0.020293716681613363, 1.0039249294845276)
Methods
rvs
(shape)Draw random variables from the distribution