11.11.3. astroML.lumfunc.bootstrap_Cminus

astroML.lumfunc.bootstrap_Cminus(x, y, xmax, ymax, xbins, ybins, Nbootstraps=10, normalize=False)[source]

Compute the binned distributions using the Cminus method, with bootstrapped estimates of the errors

Parameters
xarray_like

array of x values

yarray_like

array of y values

xmaxarray_like

array of maximum x values for each y value

ymaxarray_like

array of maximum y values for each x value

xbinsarray_like

array of bin edges for the x function: size=Nbins_x + 1

ybinsarray_like

array of bin edges for the y function: size=Nbins_y + 1

Nbootstrapsint

number of bootstrap resamplings to perform

normalizeboolean

if true, then returned distributions are normalized. Default is False.

Returns
dist_x, err_x, dist_y, err_yndarrays

distributions of size Nbins_x and Nbins_y